登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Vigarano meteorite (Cariani; Ferrara; Mainardi; Morandi; Parish; Pieve; Vigarano Mainarda; Vigarano Pieve; Vigarno; Vigarvano; Vigavano [NHM cat.]), Vigarano Pieve, Vigarano Mainarda, Ferrara Province, Emilia-Romagna, Italyi
Regional Level Types
Vigarano meteorite (Cariani; Ferrara; Mainardi; Morandi; Parish; Pieve; Vigarano Mainarda; Vigarano Pieve; Vigarno; Vigarvano; Vigavano [NHM cat.])Meteorite Fall Location
Vigarano PieveVillage
Vigarano MainardaCommune
Ferrara ProvinceProvince
Emilia-RomagnaRegion
ItalyCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
44° 51' 54'' North , 11° 30' 45'' East
Latitude & Longitude (decimal):
Meteorite Class:
Meteoritical Society Class:
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Vigarano Pieve1,988 (2014)0.5km
Palazzi Diamantina101 (2014)2.2km
Vigarano Mainarda3,910 (2014)3.1km
Porotto-Cassama4,618 (2014)3.4km
Tortiola137 (2014)4.2km
Name(s) in local language(s):
Meteorite di Vigarano (Cariani; Ferrara; Mainardi; Morandi; Pieve; Vigarano Mainarda; Vigarano Pieve; Vigarno; Vigarvano; Vigavano [NHM cat.]), Vigarano Pieve, Vigarano Mainarda, Provincia di Ferrara, Emilia-Romagna, Italia


Official name: Vigarano
Synonymes: Cariani, Ferrara, Mainardi, Morandi, Parish, Pieve, Vigarano Mainarda, Vigarano Pieve, Vigarno, Vigarvano, Vigavano
Observed fall: yes
Fall: 1910, January 22, 21:30 hrs
Coordinates (Catalogue of Meteorites): 44°51'N, 11°24'E [incorrect - see nota bene]
Approx. recovered weight: 16 kg
Carbonaceous chondrite, type CV3

Vigarano, a carbonaceous chondrite (CV3-red.), was observed to fall on 22 January 1910 near the village of Vigarano Pieve (Vigarano Mainarda municipality), west of Ferrara. The main mass (also named the "Cariani meteorite") weighed 11.5 kg and was found immediately, whilst a second part of 4.5 kg (which was named the "Morandi meteorite") was recovered weeks later, a few hundred metres from the main mass (Rosati, 1910a and 1910b). Until recently, only 4–5 kg of the original mass was preserved in different museums around the world. The rediscovery of 7 kg of material belonging to the main mass increased the total preserved mass of the Vigarano meteorite to 12 kg (Trevisani, 2010 and 2011). Vigarano is the prototype for the CV (Vigarano-like) Carbonaceous Chondrite Group. Chemically, CV Chondrites are defined by a near-solar Mg/Si ratio and by their oxygen isotope ratios. Mineralogically, the CV carbonaceous chondrites are distinguished by large chondrules, large refractory inclusions, and abundant matrix. Only 7 CV falls have been recorded. While Vigarano is the CV prototype, it is the largest member of the (relatively) 'reduced' subgroup of CV Chondrites (which also includes Efremovka and Leoville). Allende, a later and much larger 1969 fall, is a member of the oxidized subgroup. Just to confuse matters, however, Vigarano also has a few ‘oxidized’ inclusions presumably due to mild aqueous alteration.

Vigarano is one of the two carbonaceous chondrites in which has been discovered warkite, a new scandium aluminate mineral (Ca2Sc6Al6O20 - IMA 2013-169) with a P-1 aenigmatite-type structure. In the studied section, it occurs as 4-12 μm aggregates of 1-4 μm crystals associated with perovskite, gehlenitic melilite, and davisite (Ma et al., 2014; Ma et al., 2015).

Vigarano is one of the three carbonaceous chondrites in which has been discovered rubinite, a new member of the garnet group (IMA 2016-110) and the Ti3+-analog of eringaite Ca3Sc2Si3O12, goldmanite Ca3V2Si3O12, uvarovite Ca3Cr2Si3O12, or andradite Ca3Fe2Si3O12 (Ma et al., 2017a and 2017b). Like eringaite, rubinite is among the first solid materials in the solar nebula; it formed either as a condensate or through crystallisation from an 16O-rich Ca, Al, and Ti-rich melt under highly-reduced conditions. In the studied section, rubinite occurs as irregular to subhedral crystals, measuring ~0.5‒1 μm, in the central portion of an ultra-refractory fragment with Zr-panguite, spinel and davisite-diopside, all enclosed within an amoeboid olivine aggregate.



Nota bene: The approximate coordinates provided by both the Catalogue of Meteorites (5/e) and the Meteoritical Bulletin Database (August 2019) would place the fall site in the municipal territory of Bondeno to the west of the canals Cavo Napoleonico and Canale di Cento.
The correct place of the fall is here deduced from the detailed descriptions given by Rosati (1910) and Trevisani (2010). According to these authors, the Vigarano meteorite fell on 22 January 1910 at about 21:30, a little over a hundred metres from the Vigarano Pieve church. Eyewitness accounts mention seeing a very bright reddish-green trail, followed by two strong explosions with a hissing sound in between. the main body (11.5 kg) fell 3 metres south-east of Saracca farm house, owned by Michele Cariani. It formed a crater about 70 cm deep and about 1.5 m in diametre, melting the snow around it. The secondary body (4.5 kg) was found in February 2010, about 700 m to the north-east, in the Vignola farm, owned by Quirino Morandi. The two stones are known as the "Cariani meteorite" and "Morandi meteorite", respectively.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


45 valid minerals. 2 (TL) - type locality of valid minerals.

Meteorite/Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

'Albite-Anorthite Series'
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; Christophe-Michel-Levy, M. (1968) Un chondre exceptionnel dans la meteorite de Vigarano. Bulletin de la Société française de minéralogie et de cristallographie, 91, 212-214; Christophe-Michel-Levy, M., Caye, R., and Nelen, J. (1970) A new mineral in the Vigarano meteorite. Meteoritics, 5, 211; Mason, B. (1971) The carbonaceous chondrites — a selective review. Meteoritics & Planetary Science, 6, 2, 59-70; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182.
Andradite
Formula: Ca3Fe3+2(SiO4)3
Reference: Cosarinsky, M., Leshin, L.A., MacPherson, G.J., and Guan, Y. (2001) Fine-grained rims around calcium-aluminum-rich inclusions in the Vigarano and Allende CV chondrites: Petrography and oxygen isotopic composition. Meteoritics & Planetary Science, 36, Supplement, page A44-A45.
Anorthite
Formula: Ca(Al2Si2O8)
Reference: Mason, B. (1971) The carbonaceous chondrites — a selective review. Meteoritics & Planetary Science, 6, 2, 59-70; Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775.
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182.
Augite var: Fassaite
Formula: (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Reference: Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784.
Calcite
Formula: CaCO3
Reference: Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Abreau, N.M., Brearley, A.J. (2005) Carbonates in Vigarano: Terrestrial, preterrestrial, or both? Meteoritics & Planetary Science, 40, 4, 609-625.
Chromite
Formula: Fe2+Cr3+2O4
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Lauretta, D.S. (2004) Opaque mineral assemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609.
Clinoenstatite
Formula: MgSiO3
Reference: Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
Corundum
Formula: Al2O3
Reference: Maruyama, S., Kunihiro, T., Nakamura, E. (2008) A hercynite-rich inclusion in the Vigarano CV3 chondrite. 71st Annual Meeting of the Meteoritical Society, held July 28-August 1, 2008 in Matsue, Japan. Meteoritics & Planetary Science Supplement, Vol. 43, paper id. 5183.
Davisite
Formula: CaScAlSiO6
Reference: Ma, C., Krot, A.N., Beckett, J.R., Nagashima, K. and Tschauner, O. (2015) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Murchinson and Vigarano. 78th Annual Meeting of the Meteoritical Society, volume 50, paper id. 5025; Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annual Meeting of the Meteoritical Society (LPI Contrib. No. 1987), paper id. 6023.
Diamond
Formula: C
Reference: Fisenko, A.V., and Semenova, L.F. (1999) On the selection of chondrites for studying interstellar diamond. Geochemistry International, 37, 10, 952-960; Abreau, N.M., and Brearley, A.J. (2005) Carbonates in Vigarano: Terrestrial, preterrestrial, or both? Meteoritics & Planetary Science, 40, 4, 609-625.
Diopside
Formula: CaMgSi2O6
Reference: Reid, A. M., Williams, R. J., Gibson Jr, E. K., and Fredriksson, K. (1974) A refractory glass chondrule in the Vigarano chondrite. Meteoritics & Planetary Science, 9, 1 (March 1974), 35–45; MacPherson, G.J., and Davis, A.M. (1990) A petrologic and ion microprobe study of a Vigarano Type B2 refractory inclusion: Evolution by multistage melting and recrystallization following alteration. Meteoritics, 25, 4 (Dec. 1990), 382.; Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Brearley, A. J., and Jones, R.H. (1998) Chondritic Meteorites. In: Papike, J. J., editor, Planetary Materials: Chapter 3. Mineralogical Society of America, Washington, DC, USA, Reviews in Mineralogy, volume 36, pages 3-001 - 3-398; Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017b) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annual Meeting of the Meteoritical Society (LPI Contrib. No. 1987), paper id. 6023.
Dmitryivanovite
Formula: CaAl2O4
Reference: Maruyama, S., Tomioka, N. (2011) Ca-Al-Fe-rich inclusion in the Vigarano CV3 chondrite. Meteoritics & Planetary Science, 46, 5, 690–700.
Dolomite
Formula: CaMg(CO3)2
Reference: Abreau, N.M., and Brearley, A.J. (2005) Carbonates in Vigarano: Terrestrial, preterrestrial, or both? Meteoritics & Planetary Science, 40, 4, 609-625.
Enstatite
Formula: Mg2Si2O6
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
Esseneite
Formula: CaFe3+[AlSiO6]
Reference: Ciesielczuk, J., Kruszewski, Ł., and Majka, J. (2015) Comparative mineralogical study of thermally-altered coal-dump waste, natural rocks and the products of laboratory heating experiments. International Journal of Coal Geology, 139, 114-141.
Fayalite
Formula: Fe2+2SiO4
Reference: Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483.
'Fayalite-Forsterite Series'
Description: Olivine composition in the range Fo42-99.
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483; Tomeoka, K., and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta, 64, 11, 1971–1988; Cosarinsky, M., Leshin, L.A., MacPherson, G.J., and Guan, Y. (2001) Fine-grained rims around calcium-aluminum-rich inclusions in the Vigarano and Allende CV chondrites: Petrography and oxygen isotopic composition. Meteoritics & Planetary Science, 36, Supplement, page A44-A45; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182; Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta, 70, 7, 1849–1863; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274; Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017b) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annual Meeting of the Meteoritical Society (LPI Contrib. No. 1987), paper id. 6023.
Ferrihydrite
Formula: Fe3+10O14(OH)2
Reference: Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483; Tomeoka, K., and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta, 64, 11, 1971–1988; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
Forsterite
Formula: Mg2SiO4
Reference: Reid, A. M., Williams, R. J., Gibson Jr, E. K., and Fredriksson, K. (1974) A refractory glass chondrule in the Vigarano chondrite. Meteoritics & Planetary Science, 9, 1 (March 1974), 35–45; MacPherson, G.J., and Davis, A.M. (1990) A petrologic and ion microprobe study of a Vigarano Type B2 refractory inclusion: Evolution by multistage melting and recrystallization following alteration. Meteoritics 25, 4 (Dec. 1990), 382; Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483; Cosarinsky, M., Leshin, L.A., MacPherson, G.J., and Guan, Y. (2001) Fine-grained rims around calcium-aluminum-rich inclusions in the Vigarano and Allende CV chondrites: Petrography and oxygen isotopic composition. Meteoritics & Planetary Science, 36, Supplement, page A44-A45; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182.
'Garnet Group'
Formula: X3Z2(SiO4)3
Reference: Brearley, A. J., and Jones, R.H. (1998) Chondritic Meteorites. In: Papike, J. J., editor, Planetary Materials: Chapter 3. Mineralogical Society of America, Washington, DC, USA, Reviews in Mineralogy, volume 36, pages 3-001 - 3-398.
Gehlenite
Formula: Ca2Al(AlSiO7)
Reference: Christophe-Michel-Levy, M. (1968) Un chondre exceptionnel dans la meteorite de Vigarano. Bulletin de la Société française de minéralogie et de cristallographie, 91, 212-214; Christophe-Michel-Levy, M., Caye, R., and Nelen, J. (1970) A new mineral in the Vigarano meteorite. Meteoritics, 5, 211; Mason, B. (1971) The carbonaceous chondrites — a selective review. Meteoritics & Planetary Science, 6, 2, 59-70; Reid, A. M., Williams, R. J., Gibson Jr, E. K., and Fredriksson, K. (1974) A refractory glass chondrule in the Vigarano chondrite. Meteoritics & Planetary Science, 9, 1 (March 1974), 35–45; Maruyama, S., Tomioka, N. (2011) Ca-Al-Fe-rich inclusion in the Vigarano CV3 chondrite. Meteoritics & Planetary Science, 46, 5, 690–700.
'Glass'
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; Reid, A. M., Williams, R. J., Gibson Jr, E. K., and Fredriksson, K. (1974) A refractory glass chondrule in the Vigarano chondrite. Meteoritics & Planetary Science, 9, 1 (March 1974), 35–45.
Grossite
Formula: CaAl4O7
Reference: Weber, D., and Bischoff, A. (1994) The occurrence of grossite (CaAl4O7) in chondrites. Geochimica et Cosmochimica Acta, 58, 18, 3855-3877; Maruyama, S., Kunihiro, T., Nakamura, E. (2008) A hercynite-rich inclusion in the Vigarano CV3 chondrite. 71st Annual Meeting of the Meteoritical Society, held July 28-August 1, 2008 in Matsue, Japan. Meteoritics & Planetary Science Supplement, Vol. 43, paper id. 5183; Maruyama, S., Tomioka, N. (2011) Ca-Al-Fe-rich inclusion in the Vigarano CV3 chondrite. Meteoritics & Planetary Science, 46, 5, 690–700.
Hedenbergite
Formula: CaFe2+Si2O6
Reference: Kimura, M., and Ikeda, Y. (1997) Comparative study of anhydrous alteration of chondrules in reduced and oxidized CV chondrites. Antarctic Meteorite Research. Twenty-first Symposium on Antarctic Meteorites, NIPR Symposium No. 10, held June 5-7, 1996, at the National Institute of Polar Research, Tokyo. Published by the National Institute of Polar Research, Tokyo, 1997, 191-202; Cosarinsky, M., Leshin, L.A., MacPherson, G.J., and Guan, Y. (2001) Fine-grained rims around calcium-aluminum-rich inclusions in the Vigarano and Allende CV chondrites: Petrography and oxygen isotopic composition. Meteoritics & Planetary Science, 36, Supplement, page A44-A45.
Hercynite
Formula: Fe2+Al2O4
Reference: Maruyama, S., Kunihiro, T., Nakamura, E. (2008) A hercynite-rich inclusion in the Vigarano CV3 chondrite. 71st Annual Meeting of the Meteoritical Society, held July 28-August 1, 2008 in Matsue, Japan. Meteoritics & Planetary Science Supplement, Vol. 43, paper id. 5183; Maruyama, S., Tomioka, N. (2011) Ca-Al-Fe-rich inclusion in the Vigarano CV3 chondrite. Meteoritics & Planetary Science, 46, 5, 690–700.
Hibonite
Formula: CaAl12O19
Reference: Christophe-Michel-Levy, M., Caye, R., and Nelen, J. (1970) A new mineral in the Vigarano meteorite. Meteoritics, 5, 211; Mao, X.-Y., Ward, B.J., Grossman, L., and MacPherson, G.J. (1990) Chemical compositions of refractory inclusions from the Vigarano and Leoville carbonaceous chondrites. Geochimica et Cosmochimica Acta, 54, 7, 2121-2132.
Ilmenite
Formula: Fe2+TiO3
Reference: Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775.
Iron
Formula: Fe
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; McSween, H.Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 12, 1777-1790; Zinner, E. K. , Caillet, C., and El Goresy, A. (1989) Mg- and O-Isotopic Compositions of Periclase, Spinel, and Melilite from Vigarano CAI 477B. Abstracts of the Lunar and Planetary Science Conference, volume 20, 1245-1246; Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science, 31, 4, 477-483; Lauretta, D.S. (2004) Opaque mineral assemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
Iron var: Kamacite
Formula: (Fe,Ni)
Reference: McSween, H.Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 12, 1777-1790; Zinner, E. K. , Caillet, C., and El Goresy, A. (1989) Mg- and O-Isotopic Compositions of Periclase, Spinel, and Melilite from Vigarano CAI 477B. Abstracts of the Lunar and Planetary Science Conference, volume 20, 1245-1246; Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science, 31, 4, 477-483; Lauretta, D.S. (2004) Opaque mineral assemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
Kirschsteinite
Formula: CaFe2+SiO4
Reference: Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483; Cosarinsky, M., Leshin, L.A., MacPherson, G.J., and Guan, Y. (2001) Fine-grained rims around calcium-aluminum-rich inclusions in the Vigarano and Allende CV chondrites: Petrography and oxygen isotopic composition. Meteoritics & Planetary Science, 36, Supplement, page A44-A45; Maruyama, S., Tomioka, N. (2011) Ca-Al-Fe-rich inclusion in the Vigarano CV3 chondrite. Meteoritics & Planetary Science, 46, 5, 690–700.
'Low-calcium pyroxene'
Reference: Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483; Tomeoka, K., and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta, 64, 11, 1971–1988; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Tomeoka, K., and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta, 64, 11, 1971–1988; Lauretta, D.S. (2004) Opaque mineral sssemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
'Melilite Group'
Formula: Ca2M(XSiO7)
Reference: Zinner, E. K. , Caillet, C., and El Goresy, A. (1989) Mg- and O-isotopic compositions of periclase, spinel, and melilite from Vigarano CAI 477B. Abstracts of the Lunar and Planetary Science Conference, volume 20, 1245-1246; Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Maruyama, S., Kunihiro, T., Nakamura, E. (2008) A hercynite-rich inclusion in the Vigarano CV3 chondrite. 71st Annual Meeting of the Meteoritical Society, held July 28-August 1, 2008 in Matsue, Japan. Meteoritics & Planetary Science Supplement, Vol. 43, paper id. 5183; Ma, C., Krot, A.N., Beckett, J.R., Nagashima, K. and Tschauner, O. (2015) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Murchinson and Vigarano. 78th Annual Meeting of the Meteoritical Society, volume 50, paper id. 5025.
Merrillite
Formula: Ca9NaMg(PO4)7
Reference: Rubin, A.E., and Grossman, J.N. (1985) Phosphate-sulfide assembladges and Al/Ca ratios in type-3 chondrites. Meteoritics & Planetary Science, 20, 3, 479–489.
Monticellite
Formula: CaMgSiO4
Reference: rearley, A. J., and Jones, R.H. (1998) Chondritic Meteorites. In: Papike, J. J., editor, Planetary Materials: Chapter 3. Mineralogical Society of America, Washington, DC, USA, Reviews in Mineralogy, volume 36, pages 3-001 - 3-398.
Nepheline
Formula: Na3K(Al4Si4O16)
Reference: Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Cosarinsky, M., Leshin, L.A., MacPherson, G.J., and Guan, Y. (2001) Fine-grained rims around calcium-aluminum-rich inclusions in the Vigarano and Allende CV chondrites: Petrography and oxygen isotopic composition. Meteoritics & Planetary Science, 36, Supplement, page A44-A45; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science, 37, 2, 155-182.
Panguite
Formula: (Ti,Al,Sc,Mg,Zr,Ca)1.8O3
Reference: Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017b) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annual Meeting of the Meteoritical Society (LPI Contrib. No. 1987), paper id. 6023.
Pentlandite
Formula: (FexNiy)Σ9S8
Reference: Fuchs, L.H., and Olsen, E. (1973) Composition of metal in type III carbonaceous chondrites and its relevance to the source-assignment of lunar metal. Earth & Planetary Science Letters, 18,379-384; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483.
Periclase
Formula: MgO
Reference: Zinner, E. K. , Caillet, C., and El Goresy, A. (1989) Mg- and O-isotopic compositions of periclase, spinel, and melilite from Vigarano CAI 477B. Abstracts of the Lunar and Planetary Science Conference, volume 20, 1245-1246.
Perovskite
Formula: CaTiO3
Reference: Christophe-Michel-Levy, M., Caye, R., and Nelen, J. (1970) A new mineral in the Vigarano meteorite. Meteoritics, 5, 211; Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Maruyama, S., Kunihiro, T., Nakamura, E. (2008) A hercynite-rich inclusion in the Vigarano CV3 chondrite. 71st Annual Meeting of the Meteoritical Society, held July 28-August 1, 2008 in Matsue, Japan. Meteoritics & Planetary Science Supplement, Vol. 43, paper id. 5183; Maruyama, S., Tomioka, N. (2011) Ca-Al-Fe-rich inclusion in the Vigarano CV3 chondrite. Meteoritics & Planetary Science, 46, 5, 690–700; Ma, C., Krot, A.N., Beckett, J.R., Nagashima, K. and Tschauner, O. (2015) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Murchinson and Vigarano. 78th Annual Meeting of the Meteoritical Society, volume 50, paper id. 5025.
Pigeonite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Mason, B. (1962) Meteorites. John Wiley and Sons, Inc., New York & London, xii+274 pp.; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182.
Pyrrhotite
Formula: Fe7S8
Reference: Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846; Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27; Zolensky, M.E., Barrett, R. , and Browning, L. (1993) Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 57, 13, 3123-3148; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483.
Rubinite (TL)
Formula: Ca3Ti3+2Si3O12
Type Locality:
Description: Found in the central portion of an ultra-refractory fragment with Zr-panguite, spinel and davisite-diopside, all enclosed within an amoeboid olivine aggregate.
Reference: Ma, C., Yoshizaki, T., Nakamura, T. and Muto, J. (2017a) Rubinite, IMA 2016- 110. CNMNC Newsletter No. 36, April 2017, page 408; Mineralogical Magazine, 81, 403– 409; Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017b) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annual Meeting of the Meteoritical Society (LPI Contrib. No. 1987), paper id. 6023.
Saponite
Formula: Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Reference: Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Tomeoka, K., and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta, 64, 11, 1971–1988.
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Reference: Tomeoka, K., and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta, 64, 11, 1971–1988.
'Silica'
Reference: Lauretta, D.S. (2004) Opaque mineral sssemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609.
'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Reference: Abreau, N.M., and Brearley, A.J. (2005) Carbonates in Vigarano: Terrestrial, preterrestrial, or both? Meteoritics & Planetary Science, 40, 4, 609-625; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science 31, 4, 477-483.
Sodalite
Formula: Na8(Al6Si6O24)Cl2
Reference: Christophe-Michel-Levy, M., Caye, R., and Nelen, J. (1970) A new mineral in the Vigarano meteorite. Meteoritics, 5, 211; Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775.
Spinel
Formula: MgAl2O4
Reference: Christophe-Michel-Levy, M. (1968) Un chondre exceptionnel dans la meteorite de Vigarano. Bulletin de la Société française de minéralogie et de cristallographie, 91, 212-214; Christophe-Michel-Levy, M., Caye, R., and Nelen, J. (1970) A new mineral in the Vigarano meteorite. Meteoritics, 5, 211; Mason, B. (1971) The carbonaceous chondrites — a selective review. Meteoritics & Planetary Science, 6, 2, 59-70; Reid, A. M., Williams, R. J., Gibson Jr, E. K., and Fredriksson, K. (1974) A refractory glass chondrule in the Vigarano chondrite. Meteoritics & Planetary Science, 9, 1 (March 1974), 35–45; Zinner, E. K. , Caillet, C., and El Goresy, A. (1989) Mg- and O-isotopic compositions of periclase, spinel, and melilite from Vigarano CAI 477B. Abstracts of the Lunar and Planetary Science Conference, volume 20, 1245-1246; Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science, 31, 4, 477-483; Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182; Maruyama, S., Kunihiro, T., Nakamura, E. (2008) A hercynite-rich inclusion in the Vigarano CV3 chondrite. 71st Annual Meeting of the Meteoritical Society, held July 28-August 1, 2008 in Matsue, Japan. Meteoritics & Planetary Science Supplement, Vol. 43, paper id. 5183; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274; Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017b) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annual Meeting of the Meteoritical Society (LPI Contrib. No. 1987), paper id. 6023.
Taenite
Formula: (Fe,Ni)
Reference: McSween, H.Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 12, 1777-1790; Zinner, E. K. , Caillet, C., and El Goresy, A. (1989) Mg- and O-isotopic compositions of periclase, spinel, and melilite from Vigarano CAI 477B. Abstracts of the Lunar and Planetary Science Conference, volume 20, 1245-1246; Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science, 31, 4, 477-483; Lauretta, D.S. (2004) Opaque mineral assemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609; Abreau, N. M., Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
Tetrataenite
Formula: FeNi
Reference: Lauretta, D.S. (2004) Opaque mineral assemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609.
Troilite
Formula: FeS
Reference: Rubin, A.E., and Grossman, J.N. (1985) Phosphate-sulfide assembladges and Al/Ca ratios in type-3 chondrites. Meteoritics & Planetary Science, 20, 3, 479–489; Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science, 31, 4, 477-483; Lauretta, D.S. (2004) Opaque mineral assemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609.
Warkite (TL)
Formula: Ca2Sc6Al6O20
Type Locality:
Description: In association with pervoskite, melilite, and davisite.
Reference: Ma, C., Krot, A.N., Nagashima, K. and Tschauner, O. (2014) Warkite, IMA 2013- 129. CNMNC Newsletter No. 20, June 2014, page 552; Mineralogical Magazine, 78, 549-558; Ma, C., Krot, A.N., Beckett, J.R., Nagashima, K. and Tschauner, O. (2015) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Murchinson and Vigarano. 78th Annual Meeting of the Meteoritical Society, volume 50, paper id. 5025.
Wollastonite
Formula: CaSiO3
Reference: Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784.
Wüstite
Formula: FeO
Reference: E. K. Zinner, C. Caillet & A. El Goresy (1991). Evidence for extraneous origin of a magnesiowüstite-metal Fremdling from the Vigarano CV3 chondrite. Earth and Planetary Science Letters 102, #33-34, 252-264.
Wüstite var: Magnesiowüstite
Formula: FeO
Reference: Zinner, E. K., Caillet, C., and El Goresy, A. (1991) Evidence for extraneous origin of a magnesiowüstite-metal Fremdling from the Vigarano CV3 chondrite. Earth and Planetary Science Letters, 102, 33-34, 252-264.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Diamond1.CB.10aC
Iron1.AE.05Fe
var: Kamacite1.AE.05(Fe,Ni)
Taenite1.AE.10(Fe,Ni)
Tetrataenite1.AE.10FeNi
Group 2 - Sulphides and Sulfosalts
Pentlandite2.BB.15(FexNiy)Σ9S8
Pyrrhotite2.CC.10Fe7S8
Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
Chromite4.BB.05Fe2+Cr3+2O4
Corundum4.CB.05Al2O3
Dmitryivanovite4.BC.10CaAl2O4
Ferrihydrite4.FE.35Fe3+10O14(OH)2
Grossite4.CC.15CaAl4O7
Hercynite4.BB.05Fe2+Al2O4
Hibonite4.CC.45CaAl12O19
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Periclase4.AB.25MgO
Perovskite4.CC.30CaTiO3
Spinel4.BB.05MgAl2O4
Wüstite4.AB.25FeO
var: Magnesiowüstite4.AB.25FeO
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Dolomite5.AB.10CaMg(CO3)2
Group 8 - Phosphates, Arsenates and Vanadates
Merrillite8.AC.45Ca9NaMg(PO4)7
Group 9 - Silicates
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Anorthite9.FA.35Ca(Al2Si2O8)
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
var: Fassaite9.DA.15(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Clinoenstatite9.DA.10MgSiO3
Davisite9.DA.15CaScAlSiO6
Diopside9.DA.15CaMgSi2O6
Enstatite9.DA.05Mg2Si2O6
Esseneite9.DA.15CaFe3+[AlSiO6]
Fayalite9.AC.05Fe2+2SiO4
Forsterite9.AC.05Mg2SiO4
Gehlenite9.BB.10Ca2Al(AlSiO7)
Hedenbergite9.DA.15CaFe2+Si2O6
Kirschsteinite9.AC.05CaFe2+SiO4
Monticellite9.AC.10CaMgSiO4
Nepheline9.FA.05Na3K(Al4Si4O16)
Pigeonite9.DA.10(CaxMgyFez)(Mgy1Fez1)Si2O6
Saponite9.EC.45Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Sodalite9.FB.10Na8(Al6Si6O24)Cl2
Wollastonite9.DG.05CaSiO3
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Fayalite-Forsterite Series'-
'Garnet Group'-X3Z2(SiO4)3
'Glass'-
'Low-calcium pyroxene'-
'Melilite Group'-Ca2M(XSiO7)
Panguite-(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
Rubinite (TL)-Ca3Ti3+2Si3O12
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
'Silica'-
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
Warkite (TL)-Ca2Sc6Al6O20

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Iron
var: Kamacite
1.1.11.1(Fe,Ni)
Taenite1.1.11.2(Fe,Ni)
Tetrataenite1.1.11.3FeNi
Semi-metals and non-metals
Diamond1.3.6.1C
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 9:8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Pyrrhotite2.8.10.1Fe7S8
Troilite2.8.9.1FeS
Group 4 - SIMPLE OXIDES
AX
Periclase4.2.1.1MgO
Wüstite4.2.1.6FeO
A2X3
Corundum4.3.1.1Al2O3
Ferrihydrite4.3.2.2Fe3+10O14(OH)2
Ilmenite4.3.5.1Fe2+TiO3
Perovskite4.3.3.1CaTiO3
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Dmitryivanovite7.2.16.CaAl2O4
Hercynite7.2.1.3Fe2+Al2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Spinel7.2.1.1MgAl2O4
(AB)10X14
Grossite7.3.2.1CaAl4O7
AB12X19
Hibonite7.4.1.1CaAl12O19
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
(AB)3(XO4)2
Merrillite38.3.4.4Ca9NaMg(PO4)7
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with all cations in octahedral [6] coordination
Fayalite51.3.1.1Fe2+2SiO4
Forsterite51.3.1.2Mg2SiO4
Kirschsteinite51.3.2.2CaFe2+SiO4
Monticellite51.3.2.1CaMgSiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Andradite51.4.3b.1Ca3Fe3+2(SiO4)3
Group 55 - SOROSILICATES Si2O7 Groups,Generally with no Additional Anions
Si2O7 Groups, Generally with No Additional Anions with cations in [8] and lower coordination
Gehlenite55.4.1.2Ca2Al(AlSiO7)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Clinoenstatite65.1.1.1MgSiO3
Davisite65.1.3.7CaScAlSiO6
Diopside65.1.3a.1CaMgSi2O6
Enstatite65.1.2.1Mg2Si2O6
Esseneite65.1.3a.6CaFe3+[AlSiO6]
Hedenbergite65.1.3a.2CaFe2+Si2O6
Pigeonite65.1.1.4(CaxMgyFez)(Mgy1Fez1)Si2O6
Single-Width Unbranched Chains, W=1 with chains P=3
Wollastonite65.2.1.1cCaSiO3
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 clays
Saponite71.3.1b.2Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework Feldspathoids and related species
Nepheline76.2.1.2Na3K(Al4Si4O16)
Sodalite76.2.3.1Na8(Al6Si6O24)Cl2
Unclassified Minerals, Mixtures, etc.
'Albite-Anorthite Series'-
Anorthite-Ca(Al2Si2O8)
'Apatite'-Ca5(PO4)3(Cl/F/OH)
Augite
var: Fassaite
-(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
'Fayalite-Forsterite Series'-
'Garnet Group'-X3Z2(SiO4)3
'Glass'-
Iron-Fe
'Low-calcium pyroxene'-
'Melilite Group'-Ca2M(XSiO7)
Panguite-(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
Rubinite (TL)-Ca3Ti3+2Si3O12
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
'Silica'-
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
Warkite (TL)-Ca2Sc6Al6O20
Wüstite
var: Magnesiowüstite
-FeO

List of minerals for each chemical element

HHydrogen
H SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
H Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
H FerrihydriteFe103+O14(OH)2
H Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
H ApatiteCa5(PO4)3(Cl/F/OH)
CCarbon
C CalciteCaCO3
C DiamondC
C DolomiteCaMg(CO3)2
OOxygen
O WarkiteCa2Sc6Al6O20
O RubiniteCa3Ti23+Si3O12
O SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
O Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
O FerrihydriteFe103+O14(OH)2
O MagnetiteFe2+Fe23+O4
O CalciteCaCO3
O Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
O DiopsideCaMgSi2O6
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Melilite GroupCa2M(XSiO7)
O AndraditeCa3Fe23+(SiO4)3
O AnorthiteCa(Al2Si2O8)
O ChromiteFe2+Cr23+O4
O CorundumAl2O3
O DolomiteCaMg(CO3)2
O DmitryivanoviteCaAl2O4
O EnstatiteMg2Si2O6
O GrossiteCaAl4O7
O ForsteriteMg2SiO4
O GehleniteCa2Al(AlSiO7)
O HedenbergiteCaFe2+Si2O6
O HercyniteFe2+Al2O4
O HiboniteCaAl12O19
O IlmeniteFe2+TiO3
O KirschsteiniteCaFe2+SiO4
O NephelineNa3K(Al4Si4O16)
O PericlaseMgO
O PerovskiteCaTiO3
O Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
O SodaliteNa8(Al6Si6O24)Cl2
O SpinelMgAl2O4
O MerrilliteCa9NaMg(PO4)7
O WollastoniteCaSiO3
O Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
O Wüstite (var: Magnesiowüstite)FeO
O Garnet GroupX3Z2(SiO4)3
O MonticelliteCaMgSiO4
O ClinoenstatiteMgSiO3
O EsseneiteCaFe3+[AlSiO6]
O WüstiteFeO
O ApatiteCa5(PO4)3(Cl/F/OH)
O FayaliteFe22+SiO4
O DavisiteCaScAlSiO6
O Panguite(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
FFluorine
F ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Na SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Na NephelineNa3K(Al4Si4O16)
Na SodaliteNa8(Al6Si6O24)Cl2
Na MerrilliteCa9NaMg(PO4)7
Na Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
MgMagnesium
Mg SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Mg Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Mg DiopsideCaMgSi2O6
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg DolomiteCaMg(CO3)2
Mg EnstatiteMg2Si2O6
Mg ForsteriteMg2SiO4
Mg PericlaseMgO
Mg Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg SpinelMgAl2O4
Mg MerrilliteCa9NaMg(PO4)7
Mg Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Mg MonticelliteCaMgSiO4
Mg ClinoenstatiteMgSiO3
Mg Panguite(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
AlAluminium
Al WarkiteCa2Sc6Al6O20
Al SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Al Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Al AnorthiteCa(Al2Si2O8)
Al CorundumAl2O3
Al DmitryivanoviteCaAl2O4
Al GrossiteCaAl4O7
Al GehleniteCa2Al(AlSiO7)
Al HercyniteFe2+Al2O4
Al HiboniteCaAl12O19
Al NephelineNa3K(Al4Si4O16)
Al SodaliteNa8(Al6Si6O24)Cl2
Al SpinelMgAl2O4
Al Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Al EsseneiteCaFe3+[AlSiO6]
Al DavisiteCaScAlSiO6
Al Panguite(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
SiSilicon
Si RubiniteCa3Ti23+Si3O12
Si SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Si Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Si DiopsideCaMgSi2O6
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Melilite GroupCa2M(XSiO7)
Si AndraditeCa3Fe23+(SiO4)3
Si AnorthiteCa(Al2Si2O8)
Si EnstatiteMg2Si2O6
Si ForsteriteMg2SiO4
Si GehleniteCa2Al(AlSiO7)
Si HedenbergiteCaFe2+Si2O6
Si KirschsteiniteCaFe2+SiO4
Si NephelineNa3K(Al4Si4O16)
Si Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si SodaliteNa8(Al6Si6O24)Cl2
Si WollastoniteCaSiO3
Si Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Si Garnet GroupX3Z2(SiO4)3
Si MonticelliteCaMgSiO4
Si ClinoenstatiteMgSiO3
Si EsseneiteCaFe3+[AlSiO6]
Si FayaliteFe22+SiO4
Si DavisiteCaScAlSiO6
PPhosphorus
P MerrilliteCa9NaMg(PO4)7
P ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
S Pentlandite(FexNiy)Σ9S8
S PyrrhotiteFe7S8
S TroiliteFeS
ClChlorine
Cl SodaliteNa8(Al6Si6O24)Cl2
Cl ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
K NephelineNa3K(Al4Si4O16)
CaCalcium
Ca WarkiteCa2Sc6Al6O20
Ca RubiniteCa3Ti23+Si3O12
Ca SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Ca CalciteCaCO3
Ca DiopsideCaMgSi2O6
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca Melilite GroupCa2M(XSiO7)
Ca AndraditeCa3Fe23+(SiO4)3
Ca AnorthiteCa(Al2Si2O8)
Ca DolomiteCaMg(CO3)2
Ca DmitryivanoviteCaAl2O4
Ca GrossiteCaAl4O7
Ca GehleniteCa2Al(AlSiO7)
Ca HedenbergiteCaFe2+Si2O6
Ca HiboniteCaAl12O19
Ca KirschsteiniteCaFe2+SiO4
Ca PerovskiteCaTiO3
Ca Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca MerrilliteCa9NaMg(PO4)7
Ca WollastoniteCaSiO3
Ca Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Ca MonticelliteCaMgSiO4
Ca EsseneiteCaFe3+[AlSiO6]
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca DavisiteCaScAlSiO6
Ca Panguite(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
ScScandium
Sc WarkiteCa2Sc6Al6O20
Sc DavisiteCaScAlSiO6
Sc Panguite(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
TiTitanium
Ti RubiniteCa3Ti23+Si3O12
Ti IlmeniteFe2+TiO3
Ti PerovskiteCaTiO3
Ti Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Ti Panguite(Ti,Al,Sc,Mg,Zr,Ca)1.8O3
CrChromium
Cr ChromiteFe2+Cr23+O4
MnManganese
Mn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
FeIron
Fe SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Fe Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Fe FerrihydriteFe103+O14(OH)2
Fe MagnetiteFe2+Fe23+O4
Fe Taenite(Fe,Ni)
Fe Iron (var: Kamacite)(Fe,Ni)
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe AndraditeCa3Fe23+(SiO4)3
Fe ChromiteFe2+Cr23+O4
Fe HedenbergiteCaFe2+Si2O6
Fe HercyniteFe2+Al2O4
Fe IlmeniteFe2+TiO3
Fe KirschsteiniteCaFe2+SiO4
Fe Pentlandite(FexNiy)Σ9S8
Fe Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe PyrrhotiteFe7S8
Fe TetrataeniteFeNi
Fe TroiliteFeS
Fe Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Fe Wüstite (var: Magnesiowüstite)FeO
Fe EsseneiteCaFe3+[AlSiO6]
Fe IronFe
Fe WüstiteFeO
Fe FayaliteFe22+SiO4
NiNickel
Ni Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Ni Taenite(Fe,Ni)
Ni Iron (var: Kamacite)(Fe,Ni)
Ni Pentlandite(FexNiy)Σ9S8
Ni TetrataeniteFeNi
ZnZinc
Zn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
ZrZirconium
Zr Panguite(Ti,Al,Sc,Mg,Zr,Ca)1.8O3

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Rosati, A. (1910a) Studio microscopico della meteorite caduta a Vigarano Pieve, presso Ferrara, il 22 gennaio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 1° semestre, 841-846.
Rosati, A. (1910b) Studio microscopico di una seconda meteorite trovata a Vigarano Pieve, presso Ferrara, nel febbraio 1910. Atti della Reale Accademia dei Lincei, serie 5, Rendiconti, 19, 2° semestre, 25-27.
Mason, B. (1962) Meteorites. John Wiley and Sons, Inc., New York & London, xii+274 pp.
Baldanza, B. (1965) Italian meteorites. Mineralogical Magazine, 35, 214-232.
Hey, M.H. (1966) Catalogue of Meteorites. 3th Edition. Trustees of the British Museum, London, XXVIII + 637 pp.
Christophe-Michel-Levy, M. (1968) Un chondre exceptionnel dans la meteorite de Vigarano. Bulletin de la Société française de minéralogie et de cristallographie, 91, 212-214.
Christophe-Michel-Levy, M., Caye, R., and Nelen, J. (1970) A new mineral in the Vigarano meteorite. Meteoritics, 5, 211.
Mason, B. (1971) The carbonaceous chondrites — a selective review. Meteoritics & Planetary Science, 6, 2, 59-70.
Fuchs, L.H., and Olsen, E. (1973) Composition of metal in type III carbonaceous chondrites and its relevance to the source-assignment of lunar metal. Earth & Planetary Science Letters, 18,379-384.
Reid, A. M., Williams, R. J., Gibson Jr, E. K., and Fredriksson, K. (1974) A refractory glass chondrule in the Vigarano chondrite. Meteoritics & Planetary Science, 9, 1 (March 1974), 35–45..
Hutchison, B., Bevan, A.W. R., and Hall, J.M. (1977) Appendix to the Catalogue of Meteorites. British Museum (Natural History), London, 277 pp.
McSween, H.Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 12, 1777-1790.
Baldanza, B., and Triscari, M. (1978) Italian meteorites. Second revised and enlarged edition. Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 56, 259-320.
Graham, A.L., Bevan, A.W. R., Hutchison, B. (1985) Catalogue of Meteorites. 4th Edition. British Museum (Natural History), London & University of Arizona Press, Tucson, 460 pp.
Rubin, A.E., and Grossman, J.N. (1985) Phosphate-sulfide assembladges and Al/Ca ratios in type-3 chondrites. Meteoritics & Planetary Science, 20, 3, 479–489.
Zinner, E. K. , Caillet, C., and El Goresy, A. (1989) Mg- and O-isotopic compositions of periclase, spinel, and melilite from Vigarano CAI 477B. Abstracts of the Lunar and Planetary Science Conference, volume 20, 1245-1246.
MacPherson, G.J., and Davis, A.M. (1990) A petrologic and ion microprobe study of a Vigarano Type B2 refractory inclusion: Evolution by multistage melting and recrystallization following alteration. Meteoritics, 25, 4 (Dec. 1990), 382.
Mao, X.-Y., Ward, B.J., Grossman, L., and MacPherson, G.J. (1990) Chemical compositions of refractory inclusions from the Vigarano and Leoville carbonaceous chondrites. Geochimica et Cosmochimica Acta, 54, 7, 2121-2132.
Zinner, E. K., Caillet, C., and El Goresy, A. (1991) Evidence for extraneous origin of a magnesiowüstite-metal Fremdling from the Vigarano CV3 chondrite. Earth and Planetary Science Letters, 102, 33-34, 252-264.
Graham, A.L., and Lee, M. (1992) The matrix mineralogy of the Vigarano (CV3) chondrite. Abstracts of the Lunar and Planetary Science Conference, volume 23, 435-436.
Sylvester, P.J., Grossman, L., and MacPherson, G.J. (1992) Refractory inclusions with unusual chemical compositions from the Vigarano carbonaceous chondrite. Geochimica et Cosmochimica Acta, 56, 3, 1343-1363.
Sylvester, P.J., Simon, S.B., and Grossman, L. (1993) Refractory inclusions from the Leoville, Efremovka, and Vigarano C3V chondrites: Major element differences between Types A and B, and extraordinary refractory siderophile element compositions. Geochimica et Cosmochimica Acta, 57, 15, 3763-3784.
Zolensky, M.E., Barrett, R. , and Browning, L. (1993) Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 57, 13, 3123-3148.
Ross, R.D., Lugmair, G.W., Davis, A.M., and MacPherson, G.J. (1994) Isotopically dinstinct reservoirs in the solar nebula: isotope anomalies in Vigarano meteorite inclusions. Astrophysical Journal, 436, L193-L196.
Weber, D., and Bischoff, A. (1994) The occurrence of grossite (CaAl4O7) in chondrites. Geochimica et Cosmochimica Acta, 58, 18, 3855-3877.
Krot, A.N., Scott, E.R.D., and Zolensky, Z.M. (1995) Mineralogical and chemical modification of components in CV3 Chondrites: Nebular or asteroidal processing? Meteoritics & Planetary Science, 30, 6, 748-775.
Lee, M.R., Hutchinson, R., and Graham, A.L. (1996) Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite. Meteoritics & Planetary Science, 31, 4, 477-483.
Kimura, M., and Ikeda, Y. (1997) Comparative study of anhydrous alteration of chondrules in reduced and oxidized CV chondrites. Antarctic Meteorite Research. Twenty-first Symposium on Antarctic Meteorites, NIPR Symposium No. 10, held June 5-7, 1996, at the National Institute of Polar Research, Tokyo. Published by the National Institute of Polar Research, Tokyo, 1997, 191-202.
Brearley, A. J., and Jones, R.H. (1998) Chondritic Meteorites. In: Papike, J. J., editor, Planetary Materials: Chapter 3. Mineralogical Society of America, Washington, DC, USA, Reviews in Mineralogy, volume 36, pages 3-001 - 3-398.
Fisenko, A.V., and Semenova, L.F. (1999) On the selection of chondrites for studying interstellar diamond. Geochemistry International, 37, 10, 952-960.
Grady, M.M. (2000) Catalogue of Meteorites. 5th edition. Cambridge University Press, Cambridge, New York, Oakleigh, Madrid, Cape Town, 690 pp.
Tomeoka, K., and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta, 64, 11, 1971–1988.
Cosarinsky, M., Leshin, L.A., MacPherson, G.J., and Guan, Y. (2001) Fine-grained rims around calcium-aluminum-rich inclusions in the Vigarano and Allende CV chondrites: Petrography and oxygen isotopic composition. Meteoritics & Planetary Science, 36, Supplement, page A44-A45.
Krot, A.N., Hutcheon, I. D., and Keil, K. (2002) Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 2, 155-182.
Lauretta, D.S. (2004) Opaque mineral assemblages at chondrule boundaries in the Vigarano CV chondrite: Evidence for gas-solid reactions following chondrule formation. 35th Lunar and Planetary Science Conference, Abstract #1609.
Abreau, N.M., and Brearley, A.J. (2005) Carbonates in Vigarano: Terrestrial, preterrestrial, or both? Meteoritics & Planetary Science, 40, 4, 609-625.
Trevisani, E., Bonadiman, C., Coltorti, M., Tassinari, R. (2005) New data on the Vigarano chondrite. Geoitalia 2005, 5° Forum Italiano di Scienze della Terra, Spoleto 21–23 settembre 2005. Epitome, vol. 1, page 215.
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta, 70, 7, 1849–1863.
Maruyama, S., Kunihiro, T., Nakamura, E. (2008) A hercynite-rich inclusion in the Vigarano CV3 chondrite. 71st Annual Meeting of the Meteoritical Society, held July 28-August 1, 2008 in Matsue, Japan. Meteoritics & Planetary Science Supplement, Vol. 43, paper id. 5183.
Bonadiman, C., Bigoni, A., Coltorti, M., and Tassinari, R. (2009) Geochemical characterization of the Cariani block, Vigarano meteorite. Geoitalia 2009, 7° Forum Italiano di Scienze della Terra, Rimini 9–11 settembre 2009. Epitome, vol. 3, page 312.
Trevisani, E. (2010) History of the Vigarano meteorite (Emilia-Romagna, Italy) and recovery of an important part of the main mass. 89th SIMP Meeting, Ferrara, 13–15 Sept 2010. Book of abstract, page 35.
Abreau, N. M., and Brearley, A. J. (2011) Deciphering the nebular and asteroidal record in silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 2 (Feb. 2011), 252-274.
Maruyama, S., Tomioka, N. (2011) Ca-Al-Fe-rich inclusion in the Vigarano CV3 chondrite. Meteoritics & Planetary Science, 46, 5, 690–700.
Trevisani, E. (2011) History of the Vigarano meteorite (Emilia-Romagna, Italy) and recovery of an important part of the main mass. Rendiconti Lincei. Scienze Fisiche e Naturali, 22, 4, 315-326.
Ma, C., Krot, A.N., Nagashima, K. and Tschauner, O. (2014) Warkite, IMA 2013-129. CNMNC Newsletter No. 20, June 2014, page 552; Mineralogical Magazine, 78, 549-558.
Ma, C., Krot, A.N., Beckett, J.R., Nagashima, K. and Tschauner, O. (2015) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Murchinson and Vigarano. 78th Annual Meeting of the Meteoritical Society, volume 50, paper id. 5025.
Ma, C., Yoshizaki, T., Nakamura, T. and Muto, J. (2017) Rubinite, IMA 2016-110. CNMNC Newsletter No. 36, April 2017, page 408; Mineralogical Magazine, 81, 403– 409.
Ma, C., Yoshizaki, T., Krot, A.N., Beckett, J.R., Nakamura, T., Nagashima, K., Muto, J., and Ivanova, M.A. (2017) Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annual Meeting of the Meteoritical Society (LPI Contrib. No. 1987), paper id. 6023.

Other Regions, Features and Areas containing this locality

Eurasian PlateTectonic Plate
EuropeContinent

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.4.6 13:28:06 Page generated: 2020.2.14 10:50:14
Go to top of page