SUPPORT US. If is important to you, click here to donate to our Fall 2019 fundraiser!
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

The Most Common Minerals on the Earth

Last Updated: 13th Dec 2017

By Jolyon Ralph

There are currently nearly 5000 minerals known to science, but only a few dozen are common enough to be found widespread throughout the Earth's crust. This article will explain a little bit about some of the most common minerals on the Earth and where the come from.

Inside the Earth

When we talk about the minerals found on the Earth we are talking about those that are found in the Earth's crust, the only part of the Earth really open for us to explore. The crust is a thin layer (up to 100km thick) under which lies the mantle and the upper (liquid) and lower (solid) core.

The structure of the Earth

The Elements

All minerals are made up of a mixture of the 90 naturally occurring elements, and it comes as no surprise that the most common minerals are those that contain the most abundant elements in the Earth's crust.

Table 1. Abundance of elements in the crust

ElementSymbolAbundance (%)

The Minerals

Let's look at some of the most abundant minerals on Earth. Note that the photographs we show are often of exceptionally good crystals and not the form that average specimens of the minerals would appear to be - most rock-forming minerals are simply interlocking grains of a few mm maximum size, these photos show the potential of what these minerals can look like in the rare cases where conditions allow them to grow bigger and more perfect crystals.

The most common mineral in the crust is feldspar according to most references, with up to 52% of the crust being made up of feldspar. But feldspar is actually a group name for several related minerals - so we'll look a little at a couple of examples:

Clay minerals make up 5% (mostly in as ultra-fine particles in sedimentary rocks). After this we have 3% for every other silicate mineral, and only 8% for non-silicates (including carbonates such as calcite and dolomite, oxides such as magnetite and sulfides such as pyrite and pyrrhotite.

Below the crust

The mantle is around 2,900km thick, or about 46% of the Earth's radius, but represents 87% of the total volume of the Earth.

Although the mantle is only 5km below the surface at the crust's thinnest point the challenges in drilling through the crust to reach the mantle are immense (not least because the crust is only this thin in the deepest parts of the ocean.)

But we can deduce a lot about the minerals that make up the mantle from examining fragments of these mantle rocks that are brought up from very deep by volcanoes and from the careful study of seismic data which allows us to understand some of the structure of rocks buried beneath the crust. Computer models can also predict the temperature, pressure and chemistry at various depths in the Earth and from this we can deduce the types of minerals likely to be present.

Here are some of the other major minerals that are thought to make up the mantle:

Crystal System: Orthorhombic



But the most common mineral in the earth as a whole is a high-pressure form of olivine called bridgmanite - formed with a distinct structure and not found at all in the Earth's crust. It's formed below 660km deep in the mantle so is found too deep to be transported back up to the surface in volcanic activity. However, samples of this mineral have been found in meteorites.

Click here to read more about Bridgmanite

The Core

We know less about the core than any other part of the Earth not just because it is so remote but because the immense temperature/pressure found there are almost impossible to reproduce in laboratory experiments. We do know that the core is made up primarily of iron and nickel but also containing heavy elements such as gold and platinum in much greater concentrations than the crust. The outer core is liquid, but the inner core is solid. We can't ever take samples of the iron-nickel alloy from the inner core but we do believe the composition to be quite similar to that found in some metallic meteorites.

Crystal System: Isometric
Hardness:5 - 5½



Taenite is the mineral name given to a mixture (alloy) of iron and nickel found in meteorites and some terrestrial rocks. It is quite likely that the core consists of material at a similar composition, but because of the incredible pressure and temperature it is likely to be in a different crystallographic form than taenite. Some scientists have proposed that because of the immense pressure the core may even be a single huge crystal of iron-nickel.

Click here to read more about Taenite


Klein, C., Hurlbut, C. S. (1993): Manual of Mineralogy, 21st Edition. John Wiley & Sons.

Tschauner, O. et al. (2014): Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346, 1100-1102. doi: 10.1126/science.1259369.

Stixrude, L. and Cohen, R.E. (1995): Constraints on the crystalline structure of the inner core: Mechanical instability of BCC iron at high pressure. Geophysical Research Letters, 22, 125-128.

Article has been viewed at least 66332 times.
矿物 and/or 产地  
版权所有© mindat.org1993年至2019年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2019.12.8 03:07:13
Go to top of page