登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Panj-Kuh iron deposit (Panj-Kuh iron mine), Damghan County, Semnan Province, Irani
Regional Level Types
Panj-Kuh iron deposit (Panj-Kuh iron mine)Deposit
Damghan CountyCounty
Semnan ProvinceProvince
IranCountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
35° 28' 19'' North , 54° 12' 0'' East
Latitude & Longitude (decimal):
Type:
Köppen climate type:


The Panj-Kuh iron deposit is located 50 km southeast of Damghan within the Central Iranian Zone (CIZ).

The Panj-Kuh deposit is hosted mainly in the Eocene andesite and basalt volcano-pyroclastic rocks as well as Oligocene syenite, monzonite and gabbro plutonic rocks. The mineralisation of the Panj-Kuh iron deposit occurred in both orthomagmatic and hydrothermal stages. In the orthomagmatic stage, associated with crystallisation of a gabbroic magma, iron mineralisation occurred in the form of disseminated and massive ores. In the second stage, the monzonitic intrusion was injected into the gabbroic, volcano-sedimentary and volcanic rocks and caused hydrothermal iron mineralisation such as skarnisation. Pyroxene, epidote and amphibole are the main silicate minerals; magnetite and less hematite are the principal ore mineral, pyrite, chalcopyrite, marcasite, galena, sphalerite, chalcocite, and covellite are minor ore constituents (Sheibi, 2014; Nabatian et al., 2015; Sheibi et al., 2016).

The Panj-Kuh Fe oxide deposit is estimated to contain 100 million tons of iron ore with an average Fe2O3 = 84.2%, and FeO = 8.5%. The deposit tends to be zoned vertically from magnetite dominant at depth to hematite-dominantat upper levels. The ore body occurs within volcanic rocks that were brecciated during fault movement along bounding shear zones. Mineralisation occurs dominantly as disseminations, veins, and breccia infill.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


25 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Actinolite
Formula: ◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Albite
Formula: Na(AlSi3O8)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'Amphibole Supergroup'
Formula: AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Reference: Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
Analcime
Formula: Na(AlSi2O6) · H2O
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Calcite
Formula: CaCO3
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Chalcocite
Formula: Cu2S
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Chalcopyrite
Formula: CuFeS2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'Chlorite Group'
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'Clinopyroxene Subgroup'
Description: Diopside-hedenbergite series (Sheibi, 2014)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Covellite
Formula: CuS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Diopside
Formula: CaMgSi2O6
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
Epidote
Formula: (CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
Ferro-actinolite
Formula: ◻Ca2Fe2+5(Si8O22)OH2
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Galena
Formula: PbS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Hematite
Formula: Fe2O3
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Ilmenite
Formula: Fe2+TiO3
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'K Feldspar'
Formula: KAlSi3O8
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
Marcasite
Formula: FeS2
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Marialite
Formula: Na4Al3Si9O24Cl
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Pyrite
Formula: FeS2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Quartz
Formula: SiO2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Rutile
Formula: TiO2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
Sphalerite
Formula: ZnS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Titanite
Formula: CaTi(SiO4)O
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Tremolite
Formula: ◻Ca2Mg5(Si8O22)(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Galena2.CD.10PbS
Marcasite2.EB.10aFeS2
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
Group 4 - Oxides and Hydroxides
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
Rutile4.DB.05TiO2
Group 5 - Nitrates and Carbonates
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Group 8 - Phosphates, Arsenates and Vanadates
Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
Actinolite9.DE.10◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Albite9.FA.35Na(AlSi3O8)
Analcime9.GB.05Na(AlSi2O6) · H2O
Diopside9.DA.15CaMgSi2O6
Epidote9.BG.05a(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Ferro-actinolite9.DE.10◻Ca2Fe2+5(Si8O22)OH2
Marialite9.FB.15Na4Al3Si9O24Cl
Titanite9.AG.15CaTi(SiO4)O
Tremolite9.DE.10◻Ca2Mg5(Si8O22)(OH)2
Unclassified Minerals, Rocks, etc.
'Amphibole Supergroup'-AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
'Chlorite Group'-
'Clinopyroxene Subgroup'-
'K Feldspar'-KAlSi3O8

List of minerals for each chemical element

HHydrogen
H Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
H Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H MalachiteCu2(CO3)(OH)2
H AzuriteCu3(CO3)2(OH)2
H Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
H Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
H AnalcimeNa(AlSi2O6) · H2O
H Tremolite◻Ca2Mg5(Si8O22)(OH)2
CCarbon
C MalachiteCu2(CO3)(OH)2
C AzuriteCu3(CO3)2(OH)2
C CalciteCaCO3
OOxygen
O Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
O Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O AzuriteCu3(CO3)2(OH)2
O AlbiteNa(AlSi3O8)
O HematiteFe2O3
O Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
O CalciteCaCO3
O QuartzSiO2
O Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
O TitaniteCaTi(SiO4)O
O K FeldsparKAlSi3O8
O IlmeniteFe2+TiO3
O AnalcimeNa(AlSi2O6) · H2O
O MarialiteNa4Al3Si9O24Cl
O FluorapatiteCa5(PO4)3F
O RutileTiO2
O DiopsideCaMgSi2O6
O Tremolite◻Ca2Mg5(Si8O22)(OH)2
FFluorine
F Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
F FluorapatiteCa5(PO4)3F
NaSodium
Na AlbiteNa(AlSi3O8)
Na AnalcimeNa(AlSi2O6) · H2O
Na MarialiteNa4Al3Si9O24Cl
MgMagnesium
Mg Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Mg DiopsideCaMgSi2O6
Mg Tremolite◻Ca2Mg5(Si8O22)(OH)2
AlAluminium
Al Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Al Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al AlbiteNa(AlSi3O8)
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Al K FeldsparKAlSi3O8
Al AnalcimeNa(AlSi2O6) · H2O
Al MarialiteNa4Al3Si9O24Cl
SiSilicon
Si Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Si Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si AlbiteNa(AlSi3O8)
Si Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Si QuartzSiO2
Si Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Si TitaniteCaTi(SiO4)O
Si K FeldsparKAlSi3O8
Si AnalcimeNa(AlSi2O6) · H2O
Si MarialiteNa4Al3Si9O24Cl
Si DiopsideCaMgSi2O6
Si Tremolite◻Ca2Mg5(Si8O22)(OH)2
PPhosphorus
P FluorapatiteCa5(PO4)3F
SSulfur
S PyriteFeS2
S ChalcopyriteCuFeS2
S MarcasiteFeS2
S GalenaPbS
S SphaleriteZnS
S ChalcociteCu2S
S CovelliteCuS
ClChlorine
Cl Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Cl MarialiteNa4Al3Si9O24Cl
KPotassium
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
K K FeldsparKAlSi3O8
CaCalcium
Ca Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Ca Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Ca CalciteCaCO3
Ca Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Ca TitaniteCaTi(SiO4)O
Ca FluorapatiteCa5(PO4)3F
Ca DiopsideCaMgSi2O6
Ca Tremolite◻Ca2Mg5(Si8O22)(OH)2
TiTitanium
Ti Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Ti TitaniteCaTi(SiO4)O
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
FeIron
Fe Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Fe MagnetiteFe2+Fe23+O4
Fe PyriteFeS2
Fe ChalcopyriteCuFeS2
Fe HematiteFe2O3
Fe Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Fe MarcasiteFeS2
Fe Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Fe IlmeniteFe2+TiO3
CuCopper
Cu MalachiteCu2(CO3)(OH)2
Cu AzuriteCu3(CO3)2(OH)2
Cu ChalcopyriteCuFeS2
Cu ChalcociteCu2S
Cu CovelliteCuS
ZnZinc
Zn SphaleriteZnS
PbLead
Pb GalenaPbS

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 2, 211-241.
Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.

Other Regions, Features and Areas containing this locality

AsiaContinent
Eurasian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
矿物 and/or 产地  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.4.26 03:52:56 Page updated: 2023.2.24 01:28:59
Go to top of page