登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Cherokee Springs meteorite, Spartanburg Co., South Carolina, USA

This page is currently not sponsored. Click here to sponsor this page.
DisplayPhotosMapsSearch
 
Latitude & Longitude (WGS84): 35° 1' 60'' North , 81° 52' 60'' West
Latitude & Longitude (decimal): 35.0333333333, -81.8833333333


Ordinary chondrite (LL6; S1; W0)
Fell, 1 July 1933 at 09:42; 8.4 kg, 2 stones

After passing over adjoining counties of North and South Carolina, two stones (5.7 kg and 2.7 kg) were recovered after falling 11 km apart in Spartanburg County. For a couple of minutes some people near Cherokee Springs had thought they heard an airplane approaching, but after seeing a stone strike the ground they soon recovered the larger stone about 25 cm from a freshly created 25-30 cm deep hole. Similar sounds accompanied the smaller stone which landed only 15 m from a lady working on a farm. Both crudely prismatic stones were partially oriented and covered by a nearly complete fusion crust. They appeared to have broken apart from a single stone as their bases could be crudely fit together. Only vestiges of spheroidal and oval chondrites (up to 12 mm in size) are seen within a granular matrix as the silicates are very largely equilibrated. The dominant olivine (F28.0) and accompanying orthopyroxene are accompanied by interstitial untwinned plagioclase. Fe-Ni metal and troilite (≤ 5 mm) are found as aggregates between the silicates. The somewhat Ni-rich Fe-Ni metal has experienced some serious disruptions as martensite and disordered taenite have been revealed through Mössbauer spectroscopy. Very small amounts of diopside, Ca-poor clinopyroxene, and accessory chromite are also reported.

A cosmic ray exposure (CRE) age of 11.9 Ma has been reported which may reflect membership in a small cohort of LL6 meteorites with similar CRE ages. The LL chondrites are the smallest group of ordinary chondrites (~10% of fully classified falls) with nearly half of them (42) classified exactly 'LL6' chondrites at the Meteoritical Bulletin Database (in early 2016). The main masses of both stones ('fragments') have been at the United States National Museum (Washington, DC).

Mineral List


6 valid minerals.

The above list contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

Perry, S. H. (1934) The Cherokee Springs meteorite: Popular Astronomy 42 (7): 349-357. (Aug-Sept 1934).

Mason, B. (1963) Olivine in ordinary chondrites. Geochimica et Cosmochimica Acta 27(9): 1011-1023. (Sept 1963).

Keil, K. & Fredriksson, K. (1964) The Fe, Mg and Ca Distribution in Coexisting Olivines and Rhombic Pyroxenes of Chondrites. Journal of Geophysical Research Atmospheres 69 (16): 3487-3515. (August 1964).

Bunch, T.E., Keil, K. & Snetsinger, KG. (1967) Chromite composition in relation to chemistry and texture of ordinary chondrites: Geochimica et Cosmochimica Acta 31:1569-1582.

Danon, J., Souza Azevedo, I. & Scorzelli, R. B. (1989) Mössbauer spectroscopy study of the nickel-iron alloys in metal particles of Cherokee Spring LL6 chondrite: Meteoritics 24: p. 260. (Dec 1989).

Graf, T. & Marti, K. (1994) Collisional records in LL-chondrites. Meteoritics 29(5): 643–648. (Sept 1994).

Grady, M.M (2000). Catalogue of Meteorites (5/e). Cambridge University Press: Cambridge; New York; Oakleigh; Madrid; Cape Town. 689 pages.

Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. MAPS 45(1):123-134. (Jan 2010).

Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.

External Links


 
矿物 and/or 产地  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.4.27 02:07:26 Page updated: 2017.1.19 12:01:52
Go to top of page