登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Lesher, C. M., Goodwin, A. M., Campbell, I. H., Gorton, M. P. (1986) Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada. Canadian Journal of Earth Sciences, 23 (2) 222-237 doi:10.1139/e86-025

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleTrace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada
JournalCanadian Journal of Earth Sciences
AuthorsLesher, C. M.Author
Goodwin, A. M.Author
Campbell, I. H.Author
Gorton, M. P.Author
Year1986 (February 1)Volume23
Page(s)222-237Issue2
PublisherCanadian Science Publishing
DOIdoi:10.1139/e86-025Search in ResearchGate
Mindat Ref. ID478991Long-form Identifiermindat:1:5:478991:2
GUID71ec1726-c2f4-4e0c-ae1d-4ee9f4223180
Full ReferenceLesher, C. M., Goodwin, A. M., Campbell, I. H., Gorton, M. P. (1986) Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada. Canadian Journal of Earth Sciences, 23 (2) 222-237 doi:10.1139/e86-025
Plain TextLesher, C. M., Goodwin, A. M., Campbell, I. H., Gorton, M. P. (1986) Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada. Canadian Journal of Earth Sciences, 23 (2) 222-237 doi:10.1139/e86-025
In(1986, February) Canadian Journal of Earth Sciences Vol. 23 (2) Canadian Science Publishing
Abstract/Notes Archaean felsic metavolcanic rocks in the Superior Province of the Canadian Shield may be divided into three major groups on the basis of trace-element abundances and ratios. (1) FI felsic metavolcanic rocks are dacites and rhyodacites characterized by steep REE patterns with weakly negative to moderately positive Eu anomalies, high Zr/Y, low abundances of high-field-strength elements (e.g., HREE, Y, Zr, Hf), and high abundances of Sr. Examples occur in the Bowman Subgroup and Skead Group in the Abitibi Belt, in the Kakagi Lake, Lake of the Woods, Shoal Lake, and Sturgeon Lake areas of the Wabigoon Belt, and in the Confederation Lake area of the Uchi Belt. None of these horizons, as known, hosts base-metal sulphide deposits. (2) FII felsic metavolcanic rocks are rhyodacites and rhyolites characterized by gently sloping REE patterns with variable Eu anomalies, moderate Zr/Y, and intermediate abundances of HFS elements and Sr. Examples occur in the Misema Subgroup of the Abitibi Belt, in the Wabigoon Lake and Sturgeon Lake areas of the Wabigoon Belt, and in the Confederation Lake area of the Uchi Belt. Of these horizons, only those in the Sturgeon Lake area host base-metal sulphide deposits, and they exhibit the most pronounced negative Eu anomalies of this group. (3) FIII felsic metavolcanic rocks are rhyolites and high-silica rhyolites characterized by relatively flat REE patterns, which may be subdivided into two types. FIIIa felsic metavolcanic rocks exhibit variable negative Eu anomalies, low Zr/Y, and intermediate abundances of HFS elements and Sr. Examples occur in the Noranda mining district of the Abitibi Belt. FIIIb felsic metavolcanic rocks exhibit pronounced negative Eu anomalies, low Zr/Y, high abundances of HFS elements, and low abundances of Sr. Examples occur in the Kamiskotia, Kidd Creek, Matagami, and Noranda mining districts, the Garrison Subgroup in the Abitibi Belt, and at the South Bay mine in the Confederation Lake area of the Uchi Belt. All of these FIII horizons, with the exception of Garrison, host important base-metal sulphide deposits.These geochemical variations are interpreted to reflect differences in the petrogenesis of the felsic magmas, specifically, their formation or degree of modification in high-level magma chambers, which also influenced the formation of massive base-metal sulphide deposits. Most massive base-metal sulphide deposits in the Superior Province are underlain by subvolcanic magma chambers, which have been interpreted to have supplied heat to drive the ore-forming hydrothermal systems. FIII and some FII felsic volcanic rocks are interpreted to have been derived from these high-level magma chambers, accounting for their distinctive geochemical signatures and their association with massive base-metal sulphide mineralization. In contrast, FI felsic volcanic rocks are interpreted to have been derived from a deeper source and are considered to have escaped significant high-level modification, accounting for their distinctive geochemical signatures and the lack of associated base-metal sulphide mineralization. With certain limitations, the geochemistry of felsic metavolcanic rocks therefore may be used as a guide to identify prospective horizons for massive base-metal sulphide exploration in the Superior Province.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.5.8 10:52:56
Go to top of page