登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Maner, James L., London, David, Icenhower, Jonathan P. (2019) Enrichment of manganese to spessartine saturation in granite-pegmatite systems. American Mineralogist, 104 (11) 1625-1637 doi:10.2138/am-2019-6938

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleEnrichment of manganese to spessartine saturation in granite-pegmatite systems
JournalAmerican Mineralogist
AuthorsManer, James L.Author
London, DavidAuthor
Icenhower, Jonathan P.Author
Year2019 (November 1)Volume104
Page(s)1625-1637Issue11
PublisherMineralogical Society of America
DOIdoi:10.2138/am-2019-6938Search in ResearchGate
Mindat Ref. ID398714Long-form Identifiermindat:1:5:398714:2
GUIDf4dc32bb-221f-449c-bbf0-7125f46779d9
Full ReferenceManer, James L., London, David, Icenhower, Jonathan P. (2019) Enrichment of manganese to spessartine saturation in granite-pegmatite systems. American Mineralogist, 104 (11) 1625-1637 doi:10.2138/am-2019-6938
Plain TextManer, James L., London, David, Icenhower, Jonathan P. (2019) Enrichment of manganese to spessartine saturation in granite-pegmatite systems. American Mineralogist, 104 (11) 1625-1637 doi:10.2138/am-2019-6938
In(2019, November) American Mineralogist Vol. 104 (11) Mineralogical Society of America
Abstract/NotesAbstract
The enrichment of manganese in peraluminous (S-type) granitic melts beginning with the anatexis of metapelitic rock and ending with the crystallization of highly evolved pegmatites is explained using experimentally derived mineral-melt partition coefficients and solubility data for Mn-rich garnet. Mineral-melt partition coefficients for Fe, Mg, and Mn between garnet, cordierite, tourmaline, and peraluminous, B-bearing hydrous granitic melt were measured between 650 and 850 °C at 200 MPaH2O. The compositions of garnet and tourmaline synthesized in these experiments are similar to those found in nature. Garnets evolve from Sps51Alm23Prp25 to Sps81Alm15Prp4 with decreasing temperature. The Mn content of cordierite increases with decreasing temperature. The composition of tourmaline does not vary with temperature. Partition coefficients, DMα/L, and exchange coefficients, KDα/L=DMα/L/DNα/L where α is a mineral, L is liquid (melt), and M and N are different elements, are presented for mineral-glass pairs. Partition coefficients for Mg, Fe, and Mn increase with decreasing temperature for garnet, tourmaline, and cordierite. The precipitation of garnet alone results in a progressive increase of MgO/FeO and a decrease of MnO/FeO in the melt. Crystallization of cordierite and tourmaline results in a decrease of MgO/FeO and an increase of MnO/FeO in melt. Tourmaline is most efficient at concentrating Mn in residual liquids. The trend toward increasing Mn/Fe in natural garnets in granites and pegmatites is not controlled by garnet itself, but instead by the crystallization of other mafic minerals in which Mg and Fe are more compatible than is Mn.
A Rayleigh fractionation model constitutes a test of the partition coefficients reported in this manuscript. The starting composition for the model is that of a liquid (melt inclusions) from an anatectic S-type source. Normative modes of cordierite and biotite are calculated from that composition and are similar to modes of these minerals in natural occurrences. The model consists of crystallization of a cordierite-biotite granite from 850 to 650 °C. The model predicts that ~95% crystallization of the starting composition is required to reach saturation in spessartine-rich garnet at near-solidus temperatures. The model, therefore, is consistent with the occurrence of spessartine as restricted to highly fractionated granite-pegmatite systems at the end stages of magmatism.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.5.9 10:19:00
Go to top of page