登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Oskierski, H.C., Dlugogorski, B.Z., Jacobsen, G. (2013) Sequestration of atmospheric CO2 in a weathering-derived, serpentinite-hosted magnesite deposit: 14C tracing of carbon sources and age constraints for a refined genetic model. Geochimica et Cosmochimica Acta, 122. 226-246 doi:10.1016/j.gca.2013.08.029

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleSequestration of atmospheric CO2 in a weathering-derived, serpentinite-hosted magnesite deposit: 14C tracing of carbon sources and age constraints for a refined genetic model
JournalGeochimica et Cosmochimica Acta
AuthorsOskierski, H.C.Author
Dlugogorski, B.Z.Author
Jacobsen, G.Author
Year2013 (December)Volume122
Page(s)226-246
PublisherElsevier BV
DOIdoi:10.1016/j.gca.2013.08.029Search in ResearchGate
Mindat Ref. ID355598Long-form Identifiermindat:1:5:355598:3
GUIDb303e9fa-3c4b-42aa-829e-471f7418d3ad
Full ReferenceOskierski, H.C., Dlugogorski, B.Z., Jacobsen, G. (2013) Sequestration of atmospheric CO2 in a weathering-derived, serpentinite-hosted magnesite deposit: 14C tracing of carbon sources and age constraints for a refined genetic model. Geochimica et Cosmochimica Acta, 122. 226-246 doi:10.1016/j.gca.2013.08.029
Plain TextOskierski, H.C., Dlugogorski, B.Z., Jacobsen, G. (2013) Sequestration of atmospheric CO2 in a weathering-derived, serpentinite-hosted magnesite deposit: 14C tracing of carbon sources and age constraints for a refined genetic model. Geochimica et Cosmochimica Acta, 122. 226-246 doi:10.1016/j.gca.2013.08.029
In(2013) Geochimica et Cosmochimica Acta Vol. 122. Elsevier BV

References Listed

These are the references the publisher has listed as being connected to the article. Please check the article itself for the full list of references which may differ. Not all references are currently linkable within the Digital Library.

Aitchison (1988) Geol. Surv. NSW Quart. Notes New and revised lithostratigraphic units from the southwestern New England Fold Belt 72, 10
Ashley P. M. and Brownlow J. W. (1993) Silica-carbonate alteration zones in the Great Serpentinite Belt, southern New England Orogen: their nature and significance, In New England Orogen, (eds. P. G. Flood and J. C. Aitchison). University of New England, Armidale, Australia. pp. 197–214.
Ashley P. M. (1995) The Piedmont hydrothermal magnesite deposit, Great Serpentinite Belt, northern NSW: geochemical and stable isotopic constraints. Research Report 1993–94, Centre for Isotope Studies North Ryde, NSW, Australia. pp. 12–18.
Ashley P. M. (1997) Silica-carbonate alteration zones and gold mineralisation in the Great Serpentinite Belt, New England Orogen, New South Wales. In Tectonics and Metallogenesis of the New England Orogen (eds. P. M. Ashley and P. G. Flood). Geol. Soc. Aust. Spec. Pub. 19, 212–225.
Bea (2011) Vadose Zone J. Reactive transport modelling of natural carbon sequestration in ultramafic mine tailings
Benson (1913) Proc. Linn. Soc. NSW Geology and Petrology of the Great Serpentine of N.S.W. Part 1 38, 491
Brown R. E., Brownlow J. W. and Krynen J. P. (1990) The mineral deposits of the Manilla-Narrabri 1:250,000 sheet area. NSW Geol. Surv., unpub. Rep. GS1990/020.
Brown R. E., Brownlow J. W. and Krynen J. P. (1992) Manilla–Narrabri 1:250 000 metallogenic map SH/56-9, SH/55-12, Metallogenic Study and Mineral Deposit Data Sheets. NSW Geol. Surv., Metallogenic Map. Ser.
Brown (2009) NSW Geol. Surv. Q. Notes The newly defined Glen Bell Formation, and a reappraisal of the Wisemans Arm Formation, Halls Creek district, northern NSW 131, 1
Brownlow (1991) NSW Geol. Surv. Q. Notes Piedmont magnesite deposit – a hydrothermal vein system in the Great Serpentinite Belt 82, 1
Brownlow (2007) NSW Geol. Surv. Bull. Industrial mineral opportunities in New South Wales 33
Clark (1997)
Flood P. G. and Aitchison J. C. (1988) Tectonostratigraphic terranes of the southern part of the New England Orogen. In:)eds. J. D. Kleeman) New England Orogen Tectonics and Metallogenesis. University of New England, Armidale. pp. 7–10.
Gourlay A. J. (1960) The mineral industry of New South Wales: magnesite. NSW Geol Surv., unpub Rep. GS 1960/037.
Hoefs (2009)
Kralik M., Aharon P., Schroll E. and Zachmann D. (1989) Carbon and oxygen isotope systematics of magnesites: a review. In (ed. P. Möller) Magnesite, Monogr. Ser. Min. Depos. 28, 197-223.
Krishna Rao (1999) J. Geol. Soc. Ind. Features and genesis of vein-type magnesite deposit in the Doddakanya area of Karnataka, India 54, 449
Mohr (1983) Geol. Jb. Vorkommen und Genese von Magnesitlagerstätten in den Ultrabasiten Nordgriechenlands D0, 5
Möller P. (1989) Minor and trace elements in magnesite In (ed. P. Möller) Magnesite, Monogr. Ser. Min. Depos. 28, 173–195.
O’Hanley (1996)
Oskierski H. C., Bailey J. G., Frisia S., Kennedy E. M., Dlugogorski B. Z. (2010) Natural analogues to mineral sequestration of CO2: Petrographic constraints on the formation of serpentinite hosted magnesite veins. In: ACEME10, Third international conference on accelerated carbonation for environmental and materials engineering. Turku, Finland.
Oskierski H. C. (2013). Natural carbonation of ultramafic rocks in the Great Serpentinite Belt, New South Wales, Australia. Ph. D. thesis, The University of Newcastle, Australia.
Pentecoast (2005)
Pohl W. (1989) Comparative geology of magnesite deposits and occurrences. In (ed. P. Möller) Magnesite, Monogr. Ser. Min. Depos. 28, 1–13.
Quesnel B., Gautier P., Cathelineau M., Boulvais P., Guillot S., Ulrich M., Cluzel D., Maurizot P., Fritsch E. and Couteau C. (2012) Structures and vein development along the serpentine sole of the peridotite nappe of New Caledonia. Serpentine days SFMC. Porquerolles Island, France 2012 (abstr.).
Schroll (2002) Bol. Parana. Geocienc. Genesis of magnesite deposits in the view of isotope geochemistry 50, 59
Smallwood (2008) J. Aust. Ceram. Soc. Comparative analysis of sedimentary and volcanic precious opals from Australia 44–2, 17
Vickery (2010)
Wilcock (1998) AGSO J. Aust. Geol. Geophys. Sediment-hosted magnesite deposits 17–4, 247
Wilcock S. (2000) Kunwarara Magnesite Deposit. In Fourth International mining Conference. Coolum, QLD, Australia.
Williams (1985) J. Sed. Petrol. Silica diagenesis, I. Solubility controls 55–3, 301
Yang K. and Seccombe P. (1997) Geochemistry of the mafic and ultramafic complexes of the northern Great Serpentinite Belt, New South Wales: implications for first stage melting. In (eds. P. M. Ashley and P. G. Flood) Tecton. Metall. New England Orogen 19, Geol. Soc. Aust. Spec. Pub., 197–211.
Zachmann D. W. and Johannes W. (1989) Cryptocrystalline magnesite. In (ed. P. Möller) Magnesite Monogr. Ser. Min. Depos. 28, 15–28.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
矿物 and/or 产地  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.5.2 03:54:16
Go to top of page