登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Pokharel, Rasesh, Gerrits, Ruben, Schuessler, Jan A., von Blanckenburg, Friedhelm (2019) Mechanisms of olivine dissolution by rock-inhabiting fungi explored using magnesium stable isotopes. Chemical Geology, 525. 18-27 doi:10.1016/j.chemgeo.2019.07.001

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleMechanisms of olivine dissolution by rock-inhabiting fungi explored using magnesium stable isotopes
JournalChemical Geology
AuthorsPokharel, RaseshAuthor
Gerrits, RubenAuthor
Schuessler, Jan A.Author
von Blanckenburg, FriedhelmAuthor
Year2019 (October)Volume525
Page(s)18-27
PublisherElsevier BV
DOIdoi:10.1016/j.chemgeo.2019.07.001Search in ResearchGate
Mindat Ref. ID300275Long-form Identifiermindat:1:5:300275:3
GUID63fce799-039b-464d-9361-ec871ef48c05
Full ReferencePokharel, Rasesh, Gerrits, Ruben, Schuessler, Jan A., von Blanckenburg, Friedhelm (2019) Mechanisms of olivine dissolution by rock-inhabiting fungi explored using magnesium stable isotopes. Chemical Geology, 525. 18-27 doi:10.1016/j.chemgeo.2019.07.001
Plain TextPokharel, Rasesh, Gerrits, Ruben, Schuessler, Jan A., von Blanckenburg, Friedhelm (2019) Mechanisms of olivine dissolution by rock-inhabiting fungi explored using magnesium stable isotopes. Chemical Geology, 525. 18-27 doi:10.1016/j.chemgeo.2019.07.001
In(2019) Chemical Geology Vol. 525. Elsevier BV

References Listed

These are the references the publisher has listed as being connected to the article. Please check the article itself for the full list of references which may differ. Not all references are currently linkable within the Digital Library.

Balland-Bolou-Bi, C., Bolou-Bi, E.B., Vigier, N., Mustin, C., Poszwa, A., 2019. Increased Mg release rates and related Mg isotopic signatures during bacteria-phlogopite interactions. Chem. Geol., 506: 17–28, doi:https://doi.org/10.1016/j.chemgeo.2018.12.020https://doi.org/10.1016/j.chemgeo.2018.12.020.
Balogh-Brunstad, Z. et al., 2008. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim. Cosmochim. Acta, 72(11): 2601–2618, doi:https://doi.org/10.1016/j.gca.2008.04.003http://dx.doi.org/10.1016/j.gca.2008.04.003.
Banfield, J.F., Barker, W.W., Welch, S.A., Taunton, A., 1999. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci., 96(7): 3404–3411, doi:https://doi.org/10.1073/pnas.96.7.3404http://dx.doi.org/10.1073/pnas.96.7.3404.
Bechinger, C. et al., 1999. Optical Measurements of Invasive Forces Exerted by Appressoria of a Plant Pathogenic Fungus. Science, 285(5435): 1896, doi:https://doi.org/10.1126/science.285.5435.1896http://dx.doi.org/10.1126/science.285.5435.1896.
Birle (1968) Am. Mineral. Crystal structures of natural olivines 53, 807
von Blanckenburg (2016) Journal of large-scale research facilities HELGES: Helmholtz Laboratory for the Geochemistry of the Earth Surface 2
Bolou-Bi, E.B., Poszwa, A., Leyval, C., Vigier, N., 2010. Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim. Cosmochim. Acta, 74(9): 2523–2537, doi:https://doi.org/10.1016/j.gca.2010.02.010http://dx.doi.org/10.1016/j.gca.2010.02.010.
Bolou-Bi, E.B., Vigier, N., Poszwa, A., Boudot, J.-P., Dambrine, E., 2012. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France). Geochim. Cosmochim. Acta, 87: 341–355, doi:https://doi.org/10.1016/j.gca.2012.04.005http://dx.doi.org/10.1016/j.gca.2012.04.005.
Bonneville, S. et al., 2011. Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha–mineral interface. Geochim. Cosmochim. Acta, 75(22): 6988–7005, doi:https://doi.org/10.1016/j.gca.2011.08.041http://dx.doi.org/10.1016/j.gca.2011.08.041.
Bouchez, J., von Blanckenburg, F., Schuessler, J.A., 2013. Modeling novel stable isotope ratios in the weathering zone. Am. J. Sci., 313(4): 267–308, doi:https://doi.org/10.2475/04.2013.01http://dx.doi.org/10.2475/04.2013.01.
Brantley, S.L. et al., 2004. Fe isotopic fractionation during mineral dissolution with and without bacteria1. Geochim. Cosmochim. Acta, 68(15): 3189–3204, doi:10.1016/j.gca.2004.01.023http://dx.doi.org/10.1016/j.gca.2004.01.023.
Brantley, S., Kubicki, J., F White, A., 2008. Kinetics of Water-Rock Interaction. Springer, New York, NY, doi:https://doi.org/10.1007/978-0-387-73563-4http://dx.doi.org/10.1007/978-0-387-73563-4.
Burford, E.P., Fomina, M., Gadd, G.M., 2003a. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag., 67(6): 1127–1155, doi:https://doi.org/10.1180/0026461036760154http://dx.doi.org/10.1180/0026461036760154.
Burford, E.P., Kierans, M., Gadd, G.M., 2003b. Geomycology: fungi in mineral substrata. Mycologist, 17(3): 98–107, doi:https://doi.org/10.1017/S0269-915X(03)00311-2 http://dx.doi.org/10.1017/S0269-915X(03)00311-2.
Callot, G., Maurette, M., Pottier, L., Dubois, A., 1987. Biogenic etching of microfractures in amorphous and crystalline silicates. Nature, 328: 147, doi:https://doi.org/10.1038/328147a0http://dx.doi.org/10.1038/328147a0.
Not Yet Imported: Lecture Notes in Earth System Sciences - book-chapter : 10.1007/978-3-319-24987-2_2

If you would like this item imported into the Digital Library, please contact us quoting Book ID 9783319249858
Crundwell, F.K., 2014. The mechanism of dissolution of forsterite, olivine and minerals of the orthosilicate group. Hydrometallurgy, 150: 68–82, doi:https://doi.org/10.1016/j.hydromet.2014.09.006https://doi.org/10.1016/j.hydromet.2014.09.006.
Daghino (2010)
Daval, D. et al., 2011. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2. Chem. Geol., 284(1): 193–209, doi:https://doi.org/10.1016/j.chemgeo.2011.02.021https://doi.org/10.1016/j.chemgeo.2011.02.021.
DePaolo, D.J., 2011. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta, 75(4): 1039–1056, doi:https://doi.org/10.1016/j.gca.2010.11.020http://dx.doi.org/10.1016/j.gca.2010.11.020.
Duane, M.J., 2006. Coeval biochemical and biophysical weathering processes on Quaternary sandstone terraces south of Rabat (Temara), northwest Morocco. Earth Surf. Process. Landf., 31(9): 1115–1128, doi:https://doi.org/10.1002/esp.1313https://doi.org/10.1002/esp.1313.
Ehrlich, H.L., 1996. How microbes influence mineral growth and dissolution. Chem. Geol., 132(1): 5–9, doi:https://doi.org/10.1016/S0009-2541(96)00035-6https://doi.org/10.1016/S0009-2541(96)00035-6.
Fahad, Z.A., Bolou-Bi, E.B., Köhler, S.J., Finlay, R.D., Mahmood, S., 2016. Fractionation and assimilation of Mg isotopes by fungi is species dependent. Environ. Microbiol. Rep., 8(6): 956–965, doi:https://doi.org/10.1111/1758-2229.12459https://doi.org/10.1111/1758-2229.12459
Fries, D.M. et al., 2019. The response of Li and Mg isotopes to rain events in a highly-weathered catchment. Chem. Geol., 519: 68–82, doi:https://doi.org/10.1016/j.chemgeo.2019.04.023https://doi.org/10.1016/j.chemgeo.2019.04.023.
Gadd, G.M., 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res., 111(1): 3–49, doi:https://doi.org/10.1016/j.mycres.2006.12.001http://dx.doi.org/10.1016/j.mycres.2006.12.001.
Gadd, G.M., 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156: 609–643, doi:https://doi.org/10.1099/mic.0.037143-0https://doi.org/10.1099/mic.0.037143-0
Gislason, S.R. et al., 2014. Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia, 63: 4561–4574, doi:https://doi.org/10.1016/j.egypro.2014.11.489https://doi.org/10.1016/j.egypro.2014.11.489.
Golubev, S.V., Pokrovsky, O.S., Schott, J., 2005. Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 °C. Chem. Geol., 217(3): 227–238, doi:https://doi.org/10.1016/j.chemgeo.2004.12.011https://doi.org/10.1016/j.chemgeo.2004.12.011.
Not Yet Imported: Studies in Mycology - journal-article : 10.3114/sim.2008.61.09

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
Gruber, C., Zhu, C., Georg, R.B., Zakon, Y., Ganor, J., 2014. Resolving the gap between laboratory and field rates of feldspar weathering. Geochim. Cosmochim. Acta, 147: 90–106, doi:https://doi.org/10.1016/j.gca.2014.10.013https://doi.org/10.1016/j.gca.2014.10.013.
Hagerberg, D., Thelin, G., Wallander, H., 2003. The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant Soil, 252(2): 279–290, doi:https://doi.org/10.1023/a:1024719607740https://doi.org/10.1023/a:1024719607740
Not Yet Imported: Experimental Agriculture - journal-article : 10.1017/S0014479700014113

If you would like this item imported into the Digital Library, please contact us quoting Journal ID 22859
Harold, F.M., 2002. Force and compliance: rethinking morphogenesis in walled cells. Fungal genetics and biology: FG & B, 37(3): 271–282, doi:https://doi.org/10.1016/s1087-1845(02)00528-5https://doi.org/10.1016/s1087-1845(02)00528-5.
Hawksworth, D.L., 1988. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc., 96(1): 3–20, doi:https://doi.org/10.1111/j.1095-8339.1988.tb00623.xhttps://doi.org/10.1111/j.1095-8339.1988.tb00623.x.
Hellmann, R. et al., 2012. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol., 294–295(0): 203–216, doi:https://doi.org/10.1016/j.chemgeo.2011.12.002http://dx.doi.org/10.1016/j.chemgeo.2011.12.002.
Henderson, M.E.K., Duff, R.B., 1963. The release of metallic and silicate ions from minerals, rocks, and soils by fungal activity. J. Soil Sci., 14(2): 236–246, doi:https://doi.org/10.1111/j.1365-2389.1963.tb00949.xhttps://doi.org/10.1111/j.1365-2389.1963.tb00949.x.
Hirsch, P., Eckhardt, F.E.W., Palmer Jr, R.J., 1995. Fungi active in weathering of rock and stone monuments. Can. J. Bot., 73 (S1): 1384–1390, doi:https://doi.org/10.1139/b95-401https://doi.org/10.1139/b95-401.
Hoffland, E. et al., 2004. The role of fungi in weathering. Front. Ecol. Environ., 2(5): 258–264, doi:https://doi.org/10.1890/1540-9295(2004)002[0258:TROFIW]2.0.CO;2https://doi.org/10.1890/1540-9295(2004)002[0258:TROFIW]2.0.CO;2.
Johnson, N.C. et al., 2014. Olivine dissolution and carbonation under conditions relevant for in situ carbon storage. Chem. Geol., 373: 93–105, doi:https://doi.org/10.1016/j.chemgeo.2014.02.026https://doi.org/10.1016/j.chemgeo.2014.02.026.
Kimmig, S.R., Holmden, C., Bélanger, N., 2018. Biogeochemical cycling of Mg and its isotopes in a sugar maple forest in Québec. Geochim. Cosmochim. Acta, 230: 60–82, doi:https://doi.org/10.1016/j.gca.2018.03.020https://doi.org/10.1016/j.gca.2018.03.020.
Kolesov, B.A., Geiger, C.A., 2004. A Raman spectroscopic study of Fe–Mg olivines. Phys. Chem. Miner., 31(3): 142–154, doi:https://doi.org/10.1007/s00269-003-0370-yhttps://doi.org/10.1007/s00269-003-0370-y.
Krumbein, W.E., Jens, K., 1981. Biogenic rock varnishes of the negev desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia, 50(1): 25–38, doi:https://doi.org/10.1007/bf00378791https://doi.org/10.1007/bf00378791.
Li, Z., Liu, L., Chen, J., Teng, H., 2016. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology, 44(4): 319–322, doi:https://doi.org/10.1130/g37561.1https://doi.org/10.1130/g37561.1
Luce, R.W., Bartlett, R.W., Parks, G.A., 1972. Dissolution kinetics of magnesium silicates. Geochim. Cosmochim. Acta, 36(1): 35–50, doi:https://doi.org/10.1016/0016-7037(72)90119-6https://doi.org/10.1016/0016-7037(72)90119-6.
Maher, K. et al., 2016. A spatially resolved surface kinetic model for forsterite dissolution. Geochim. Cosmochim. Acta, 174: 313–334, doi:https://doi.org/10.1016/j.gca.2015.11.019http://dx.doi.org/10.1016/j.gca.2015.11.019.
Martin-Sanchez, P.M., Gorbushina, A.A., Kunte, H.-J., Toepel, J., 2016. A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae. Biofouling, 32(6): 635–644, doi:https://doi.org/10.1080/08927014.2016.1177515https://doi.org/10.1080/08927014.2016.1177515
Mavromatis, V., Prokushkin, A.S., Pokrovsky, O.S., Viers, J., Korets, M.A., 2014. Magnesium isotopes in permafrost-dominated Central Siberian larch forest watersheds. Geochim. Cosmochim. Acta, 147: 76–89, doi:https://doi.org/10.1016/j.gca.2014.10.009https://doi.org/10.1016/j.gca.2014.10.009.
Moosdorf, N., Renforth, P., Hartmann, J., 2014. Carbon Dioxide Efficiency of Terrestrial Enhanced Weathering. Environmental Science & Technology, 48(9): 4809–4816, doi:https://doi.org/10.1021/es4052022https://doi.org/10.1021/es4052022.
Not Yet Imported: Fungal Genetics and Biology - journal-article : 10.1016/j.fgb.2013.04.001

If you would like this item imported into the Digital Library, please contact us quoting Journal ID 24583
Not Yet Imported: AMB Express - journal-article : 10.1186/s13568-014-0080-5

If you would like this item imported into the Digital Library, please contact us quoting Journal ID 3520
Oelkers, E.H. et al., 2015. The efficient long-term inhibition of forsterite dissolution by common soil bacteria and fungi at Earth surface conditions. Geochim. Cosmochim. Acta, 168: 222–235, doi:https://doi.org/10.1016/j.gca.2015.06.004https://doi.org/10.1016/j.gca.2015.06.004.
Oelkers, E.H., Berninger, U.-N., Pérez-Fernàndez, A., Chmeleff, J., Mavromatis, V., 2018a. The temporal evolution of magnesium isotope fractionation during hydromagnesite dissolution, precipitation, and at equilibrium. Geochim. Cosmochim. Acta, 226: 36–49, doi:https://doi.org/10.1016/j.gca.2017.11.004https://doi.org/10.1016/j.gca.2017.11.004.
Oelkers, E.H., Declercq, J., Saldi, G.D., Gislason, S.R., Schott, J., 2018b. Olivine dissolution rates: a critical review. Chem. Geol., 500: 1–19, doi:https://doi.org/10.1016/j.chemgeo.2018.10.008https://doi.org/10.1016/j.chemgeo.2018.10.008.
Opfergelt, S. et al., 2014. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland. Geochim. Cosmochim. Acta, 125: 110–130, doi:https://doi.org/10.1016/j.gca.2013.09.036https://doi.org/10.1016/j.gca.2013.09.036.
Parkhurst (1999) User's guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 99
Pearce, C.R., Saldi, G.D., Schott, J., Oelkers, E.H., 2012. Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: evidence from Mg isotopes. Geochim. Cosmochim. Acta, 92(0): 170–183, doi:https://doi.org/10.1016/j.gca.2012.05.045http://dx.doi.org/10.1016/j.gca.2012.05.045.
Pokharel, R. et al., 2017. Mg Isotope Fractionation during Uptake by a Rock-Inhabiting, Model Microcolonial Fungus Knufia petricola at Acidic and Neutral pH. Environmental Science & Technology, 51(17): 9691–9699, doi:10.1021/acs.est.7b01798https://doi.org/10.1021/acs.est.7b01798.
Pokharel, R. et al., 2018. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants. Environmental Science & Technology, doi:https://doi.org/10.1021/acs.est.8b02238https://doi.org/10.1021/acs.est.8b02238.
Pokrovsky, O.S., Schott, J., 2000a. Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach. Geochim. Cosmochim. Acta, 64 (19): 3299–3312, doi:https://doi.org/10.1016/S0016-7037(00)00435-Xhttp://dx.doi.org/10.1016/S0016-7037(00)00435-X.
Pokrovsky, O.S., Schott, J., 2000b. Kinetics and mechanism of forsterite dissolution at 25 °C and pH from 1 to 12. Geochim. Cosmochim. Acta, 64(19): 3313–3325, doi:https://doi.org/10.1016/S0016-7037(00)00434-8http://dx.doi.org/10.1016/S0016-7037(00)00434-8.
Ra, K., Kitagawa, H., 2007. Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS. J. Anal. At. Spectrom., 22(7): 817–821, doi:https://doi.org/10.1039/B701213Fhttps://doi.org/10.1039/B701213F.
Ra, K., Kitagawa, H., Shiraiwa, Y., 2010. Mg isotopes in chlorophyll-a and coccoliths of cultured coccolithophores (Emiliania huxleyi) by MC-ICP-MS. Mar. Chem., 122(1): 130–137, doi:https://doi.org/10.1016/j.marchem.2010.07.004https://doi.org/10.1016/j.marchem.2010.07.004.
Renforth, P., Pogge von Strandmann, P.A.E., Henderson, G.M., 2015. The dissolution of olivine added to soil: Implications for enhanced weathering. Appl. Geochem., 61: 109–118, doi:https://doi.org/10.1016/j.apgeochem.2015.05.016https://doi.org/10.1016/j.apgeochem.2015.05.016.
Rimstidt, J.D., Brantley, S.L., Olsen, A.A., 2012. Systematic review of forsterite dissolution rate data. Geochim. Cosmochim. Acta, 99: 159–178, doi:https://doi.org/10.1016/j.gca.2012.09.019https://doi.org/10.1016/j.gca.2012.09.019.
Not Yet Imported: FEMS Microbiology Ecology - journal-article : 10.1016/S0168-6496(03)00222-8

If you would like this item imported into the Digital Library, please contact us quoting Journal ID 23320
Ryu, J.-S. et al., 2016. Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation. Chem. Geol., 445: 135–145, doi:https://doi.org/10.1016/j.chemgeo.2016.02.006https://doi.org/10.1016/j.chemgeo.2016.02.006.
Saldi, G.D., Daval, D., Morvan, G., Knauss, K.G., 2013. The role of Fe and redox conditions in olivine carbonation rates: an experimental study of the rate limiting reactions at 90 and 150°C in open and closed systems. Geochim. Cosmochim. Acta, 118: 157–183, doi:https://doi.org/10.1016/j.gca.2013.04.029https://doi.org/10.1016/j.gca.2013.04.029.
Schmitt, A.-D. et al., 2012. Processes controlling the stable isotope compositions of Li, B, Mg and ca in plants, soils and waters: a review. Compt. Rendus Geosci., 344 (11−12): 704–722, doi:https://doi.org/10.1016/j.crte.2012.10.002http://dx.doi.org/10.1016/j.crte.2012.10.002.
Schott, J., Berner, R.A., 1983. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochim. Cosmochim. Acta, 47(12): 2233–2240, doi:https://doi.org/10.1016/0016-7037(83)90046-7https://doi.org/10.1016/0016-7037(83)90046-7.
Schott, J., Mavromatis, V., Fujii, T., Pearce, C.R., Oelkers, E.H., 2016. The control of carbonate mineral Mg isotope composition by aqueous speciation: Theoretical and experimental modeling. Chem. Geol., 445: 120–134, doi:https://doi.org/10.1016/j.chemgeo.2016.03.011http://dx.doi.org/10.1016/j.chemgeo.2016.03.011.
Schuessler, J.A., Kämpf, H., Koch, U., Alawi, M., 2016. Earthquake impact on iron isotope signatures recorded in mineral spring water. Journal of Geophysical Research: Solid Earth, 121(12): 8548–8568, doi:https://doi.org/10.1002/2016JB013408https://doi.org/10.1002/2016JB013408.
Schuiling, R.D., Krijgsman, P., 2006. Enhanced weathering: an effective and cheap tool to Sequester Co2. Clim. Chang., 74(1): 349–354, doi:https://doi.org/10.1007/s10584-005-3485-yhttps://doi.org/10.1007/s10584-005-3485-y.
Schuiling (1986) Geologie & Mijnbouw A potential process for the neutralisation of industrial waste acids by reaction with olivine 65, 243
Shirokova, L.S. et al., 2013. Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquat. Geochem., 19(1): 1–24, doi:https://doi.org/10.1007/s10498-012-9174-3https://doi.org/10.1007/s10498-012-9174-3.
Sissmann, O. et al., 2013. The deleterious effect of secondary phases on olivine carbonation yield: Insight from time-resolved aqueous-fluid sampling and FIB-TEM characterization. Chem. Geol., 357: 186–202, doi:https://doi.org/10.1016/j.chemgeo.2013.08.031https://doi.org/10.1016/j.chemgeo.2013.08.031.
Taylor, L.L. et al., 2015. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Chang., 6: 402, doi:https://doi.org/10.1038/nclimate2882https://doi.org/10.1038/nclimate2882.
Tipper, E.T., Gaillardet, J., Louvat, P., Capmas, F., White, A.F., 2010. Mg isotope constraints on soil pore-fluid chemistry: evidence from Santa Cruz, California. Geochim. Cosmochim. Acta, 74(14): 3883–3896, doi:https://doi.org/10.1016/j.gca.2010.04.021http://dx.doi.org/10.1016/j.gca.2010.04.021.
Torres, M.A., West, A.J., Nealson, K., 2014. Microbial acceleration of olivine dissolution via siderophore production. Procedia Earth and Planetary Science, 10: 118–122, doi:https://doi.org/10.1016/j.proeps.2014.08.041https://doi.org/10.1016/j.proeps.2014.08.041.
Uhlig, D., Schuessler, J.A., Bouchez, J., Dixon, J.L., von Blanckenburg, F., 2017. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences, 14(12): 3111–3128, doi:10.5194/bg-14-3111-2017https://doi.org/10.5194/bg-14-3111-2017.
Warcup, J.H., 1951. The ecology of soil fungi. Trans. Br. Mycol. Soc., 34(3): 376–399, doi:https://doi.org/10.1016/S0007-1536(51)80065-2https://doi.org/10.1016/S0007-1536(51)80065-2.
White, A.F., Brantley, S.L., 2003. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem. Geol., 202(3–4): 479–506, doi:https://doi.org/10.1016/j.chemgeo.2003.03.001http://dx.doi.org/10.1016/j.chemgeo.2003.03.001.
Wiederhold, J.G. et al., 2006. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environmental Science & Technology, 40(12): 3787–3793, doi:https://doi.org/10.1021/es052228yhttp://dx.doi.org/10.1021/es052228y.
Wimpenny, J. et al., 2010. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim. Cosmochim. Acta, 74(18): 5259–5279, doi:https://doi.org/10.1016/j.gca.2010.06.028http://dx.doi.org/10.1016/j.gca.2010.06.028.
Wimpenny, J., Colla, C.A., Yin, Q.-Z., Rustad, J.R., Casey, W.H., 2014. Investigating the behaviour of Mg isotopes during the formation of clay minerals. Geochim. Cosmochim. Acta, 128: 178–194, doi:https://doi.org/10.1016/j.gca.2013.12.012https://doi.org/10.1016/j.gca.2013.12.012.
Wogelius, R.A., Walther, J.V., 1991. Olivine dissolution at 25°C: Effects of pH, CO2, and organic acids. Geochim. Cosmochim. Acta, 55(4): 943–954, doi:https://doi.org/10.1016/0016-7037(91)90153-Vhttp://dx.doi.org/10.1016/0016-7037(91)90153-V.
Wollenzien, U., de Hoog, G.S., Krumbein, W., Uijthof, J.M.J., 1997. Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Antonie Van Leeuwenhoek, 71(3): 281–288, doi:https://doi.org/10.1023/a:1000157803954http://dx.doi.org/10.1023/a:1000157803954.
Young, E.D., Galy, A., 2004. The isotope geochemistry and cosmochemistry of magnesium. Rev. Mineral. Geochem., 55(1): 197–230, doi:https://doi.org/10.2138/gsrmg.55.1.197http://dx.doi.org/10.2138/gsrmg.55.1.197.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.5.9 12:39:30
Go to top of page