SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography


This page kindly sponsored by Chris Whitney-Smith
Hide all sections | Show all sections

About CerussiteHide

Colourless, white, gray, blue, or green; colourless in transmitted light
Adamantine, Vitreous, Resinous, Pearly, Dull, Earthy
3 - 3½
Specific Gravity:
6.53 - 6.57
Crystal System:
Member of:
Named in 1845 by Wilhelm Karl von Haidinger from the Latin, cerussa, meaning "white lead."
Aragonite Group.

Cerussite is a lead carbonate mineral, usually found in the oxidized zone of lead ore deposits. It is a very common weathering product of galena and other lead ore minerals.

Visit for gemological information about Cerussite.

Classification of CerussiteHide

Approved, 'Grandfathered' (first described prior to 1959)

A : Carbonates without additional anions, without H2O
B : Alkali-earth (and other M2+) carbonates

1 : A(XO3)

11 : Carbonates
9 : Carbonates of Pb, Zr and Th

Pronounciation of CerussiteHide

PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of CerussiteHide

Adamantine, Vitreous, Resinous, Pearly, Dull, Earthy
Transparent, Translucent
Colourless, white, gray, blue, or green; colourless in transmitted light
3 - 3½ on Mohs scale
Very brittle
On {110} and {021} distinct; on {010} and {012} in traces.
6.53 - 6.57 g/cm3 (Measured)    6.558 g/cm3 (Calculated)

Optical Data of CerussiteHide

Biaxial (-)
RI values:
nα = 1.803 nβ = 2.074 nγ = 2.076
Measured: 8° to 14°, Calculated: 8°
Max Birefringence:
δ = 0.273
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Very High
relatively strong

Chemical Properties of CerussiteHide

IMA Formula:

Crystallography of CerussiteHide

Crystal System:
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Cell Parameters:
a = 5.179(1) Å, b = 8.492(3) Å, c = 6.141(2) Å
a:b:c = 0.61 : 1 : 0.723
Unit Cell V:
270.08 ų (Calculated from Unit Cell)
Crystal morphology extremely varied. Simple crystals often tabular {010} and elongated [001] or [100]. Also equant or dipyramidal and then pseudo-hexagonal. Rarely acicular [001] or very thin tabular {001}. {010} and {0kl} usually striated [100]; {111} often striated [110] or [112]. Reticular twin aggregates common. Massive, granular, dense, compact. Stalactitic at times; pulverulent to earthy. Fibrous rare.
Almost universal. Most commonly on {110}, as twin lamellae or as contact twin types producing stellate pseudo-hexagonal groups or reticulated aggregates. On {130} less common, mainly as contact twins with a heart-shaped outline. Both laws may occur simultaneously.
Non-standard space group setting (Pmcn). Other source gives cell parameters 5.173, 8.48, 6.13 A.

Crystallographic forms of CerussiteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Cerussite no.48 - Goldschmidt (1913-1926)
Cerussite no.63 - Goldschmidt (1913-1926)
Cerussite no.140 - Goldschmidt (1913-1926)
Cerussite no.157 - Goldschmidt (1913-1926)
Cerussite no.261 - Goldschmidt (1913-1926)
Cerussite no.460 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indices | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
CIF File    Best | x | y | z | a | b | c
Stop | Start
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0018859CerussiteYe Y, Smyth J R, Boni P (2012) Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction American Mineralogist 97 707-7122012Tsumeb, Namibia0300
0006304CerussiteAntao S M, Hassan I (2009) The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: Linear structural trends The Canadian Mineralogist 47 1245-12552009synthetic0293
0017676CerussiteColby M, LaCoste L (1933) The crystal structure of Cerussite _cod_database_code 1010956 Zeitschrift fur Kristallographie 84 299-30919330293
0011016CerussiteChevrier G, Giester G, Heger G, Jarosch D, Wildner M, Zemann J (1992) Neutron single-crystal refinement of cerussite, PbCO3, and comparison with other aragonite-type carbonates Zeitschrift fur Kristallographie 199 67-741992Pribram, Czech Republic0293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
3.593 Å(100)
3.498 Å(43)
3.074 Å(24)
2.522 Å(20)
2.487 Å(32)
2.081 Å(27)
1.859 Å(21)

Geological EnvironmentHide

Geological Setting:
Commonly occurs in the upper oxidized zones of base metal deposits, especially lead-silver deposits.

Type Occurrence of CerussiteHide

Synonyms of CerussiteHide

Other Language Names for CerussiteHide

Varieties of CerussiteHide

Chrome-CerussiteVariety of Cerussite. Not properly Diagnosed yet. Claimed to be a mixture of Cerussite and Crocoite in Hey's Chemical Index of Minerals.
Silver-bearing CerussiteA silver-bearing variety of cerussite.
Usually cerussite with tiny inclusions of silver minerals (acanthite, silver, chlorargyrite, ...).
Zinc-bearing CerussiteAragonite group. A zincian variety of Cerussite.
Originally reported from Monteponi Mine, Iglesias, Carbonia-Iglesias Province, Sardinia, Italy.

Relationship of Cerussite to other SpeciesHide

Member of:
Other Members of this group:
AragoniteCaCO3Orth. mmm (2/m 2/m 2/m)
StrontianiteSrCO3Orth. mmm (2/m 2/m 2/m)
WitheriteBaCO3Orth. mmm (2/m 2/m 2/m)
Forms a series with:

Common AssociatesHide

Associated Minerals Based on Photo Data:
613 photos of Cerussite associated with MalachiteCu2(CO3)(OH)2
475 photos of Cerussite associated with GalenaPbS
352 photos of Cerussite associated with BaryteBaSO4
266 photos of Cerussite associated with AzuriteCu3(CO3)2(OH)2
231 photos of Cerussite associated with SmithsoniteZnCO3
227 photos of Cerussite associated with PyromorphitePb5(PO4)3Cl
209 photos of Cerussite associated with QuartzSiO2
184 photos of Cerussite associated with MimetitePb5(AsO4)3Cl
178 photos of Cerussite associated with AnglesitePbSO4
171 photos of Cerussite associated with LinaritePbCu(SO4)(OH)2

Related Minerals - Nickel-Strunz GroupingHide

5.AB.05CalciteCaCO3Trig. 3m (3 2/m) : R3c
5.AB.05MagnesiteMgCO3Trig. 3m (3 2/m) : R3c
5.AB.05OtaviteCdCO3Trig. 3m (3 2/m)
5.AB.05RhodochrositeMnCO3Trig. 3m (3 2/m) : R3c
5.AB.05SideriteFeCO3Trig. 3m (3 2/m) : R3c
5.AB.05SmithsoniteZnCO3Trig. 3m (3 2/m) : R3c
5.AB.05SpherocobaltiteCoCO3Trig. 3m (3 2/m) : R3c
5.AB.10AnkeriteCa(Fe2+,Mg)(CO3)2Trig. 3 : R3
5.AB.10DolomiteCaMg(CO3)2Trig. 3 : R3
5.AB.10KutnohoriteCaMn2+(CO3)2Trig. 3 : R3
5.AB.10MinrecorditeCaZn(CO3)2Trig. 3 : R3
5.AB.15AragoniteCaCO3Orth. mmm (2/m 2/m 2/m)
5.AB.15StrontianiteSrCO3Orth. mmm (2/m 2/m 2/m)
5.AB.15WitheriteBaCO3Orth. mmm (2/m 2/m 2/m)
5.AB.20VateriteCaCO3Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc
5.AB.25HuntiteCaMg3(CO3)4Trig. 3 2 : R3 2
5.AB.30NorsethiteBaMg(CO3)2Trig. 3 2 : R3 2
5.AB.40OlekminskiteSr(Sr,Ca,Ba)(CO3)2Trig. 3 2 : P3 2 1
5.AB.45BarytocalciteBaCa(CO3)2Mon. 2/m : P21/m
5.AB.50Carbocernaite(Ca,Na)(Sr,Ce,Ba)(CO3)2Orth. mm2
5.AB.55BenstoniteBa6Ca6Mg(CO3)13Trig. 3 : R3
5.AB.60JuangodoyiteNa2Cu(CO3)2Mon. 2/m : P21/b

Related Minerals - Dana Grouping (8th Ed.)Hide mmm (2/m 2/m 2/m) mmm (2/m 2/m 2/m)

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

11.9.2HydrocerussitePb3(CO3)2(OH)2Trig. 3m (3 2/m) : R3m
11.9.3DundasitePbAl2(CO3)2(OH)4 · H2OOrth. mmm (2/m 2/m 2/m)
11.9.4Gysinite-(Nd)PbNd(CO3)2(OH) · H2OOrth. mmm (2/m 2/m 2/m)
11.9.5Schuilingite-(Nd)PbCu(Nd,Gd,Sm,Y)(CO3)3(OH) · 1.5H2OOrth. mm2
11.9.6TuliokiteNa6BaTh(CO3)6 · 6H2OTrig.
11.9.7WeloganiteNa2Sr3Zr(CO3)6 · 3H2OTric. 1 : P1
11.9.8SabinaiteNa4Zr2TiO4(CO3)4Mon. 2/m : B2/b

Fluorescence of CerussiteHide

Yellow to golden-yellow, white (best LW UV), also under X-rays.

Other InformationHide

Thermal Behaviour:
Breaks down to a basic carbonate at about 300°, which, in turn, decomposes to PbO at about 500° (?).
According to Grisafe & White (1964) cerussite decomposes:
- at ca. 204 oC, according to reaction: 3PbCO3 ⇌ 2Pb2O(CO3) + CO2
Further reactions:
- at ca. 283 oC: 2Pb3O(CO3)2 ⇌ 3Pb2O(CO3) + CO2
- at 373 oC: 3Pb2O(CO3)⇌ 2Pb3O2(CO3) + CO2
- at 435 oC: Pb3O2(CO3) ⇌ 3PbO + CO2
Soluble in dilute HNO3 with effervescence.

Occurs as alteration pseudomorphs after anglesite, phosgenite, leadhillite, caledonite, hydrocerussite, bournonite, linarite, pyromorphite, vanadinite. Also occurs as incrustation or substitution pseudomorphs after calcite and sphalerite.
Pseudomorphs of pyromorphite, minium, malachite, quartz, galena, limonite, calcite, siderite, phosgenite, dolomite and chrysocolla after crystals of cerussite have been observed.
Health Risks:
Contains lead - wash hands after handling, avoid inhaling dust when breaking.
Industrial Uses:
Ore of lead, and often also of silver.

Cerussite in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for CerussiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Conrad Gesner (1565) De Omni Rervm Fossilivm Genere.
Wallerius, J.G (1747) Mineralogia, eller Mineralriket. Stockholm: 295 (as Minera Plumbi spathacea).
Wallerius, J.G. (1753) French edition of “Mineralogia, eller Mineralriket.” 2 volumes, Paris: 1: 536 (as Plomb spathique).
Bergmann, T. (1780) Opuscula of Tobernus Bergmann: 2: 426 (as Plumbum acido aero mineralisatum).
Beudant, F.S. (1832) Traité élémentaire de Minéralogie, second edition, 2 volumes: 2: 363 (as Céruse).
Karsten (1832) Journal für Chemie und Physik, Nuremberg: 45: 365.
Haidinger, Wm. (1845) Handbuch der bestimmenden Mineralogie. Vienna: 503 (as Cerussit).
Schrauf (1860) Sitzber. Ak. Wien: 42: 120.
Des Cloizeaux, A. (1867) Nouvelles recherches sur les propriétés optique des cristaux, naturels ou artificiels, et sur les variations que ces propriétés éprouvent sous l’influence de la chaleur. 222pp., Paris. (Institut imperial de France, Mémoires 18): 49.
Koksharov, N. von (1870) Materialien zur Mineralogie Russlands. 11 volumes with atlas, vol. 6: 100.
Joulin (1873) Bull. Soc. chim. phys.: 19[2]: 345.
de Luca (1877) Comptes rendus de l’Académie des sciences de Paris: 84: 1457.
Brown (1886) American Journal of Science: 32: 377.
Fletcher (1887) Mineralogical Magazine: 7: 187.
Negri (1889) Rivista di mineralogia e cristallografia italiana, Padua: 4: 53.
Traube (1894) Zeitschrift der Deutschen Geologische Gesellschaft, Berlin: 46: 50.
Hobbs (1895) American Journal of Science: 50: 121.
Ohm (1899) Jb. Min., Beil.-Bd.: 13: 31.
Mügge (1901) Jb. Min., Beil.-Bd.: 14: 259.
Panichi (1902) Reale accademia nazionale dei Lincei, Rome, Mem: 4[5a]: 419.
Rogers (1903) American Geologist, Minneapolis: 31: 45.
Warren (1903) American Journal of Science: 16: 337.
Colson (1905) Comptes rendus de l’Académie des sciences de Paris: 140: 865.
Lacroix (1909): 3: 727.
Doelter, C. (1911) Handbuch der Mineral-chemie (in 4 volumes divided into parts): 1: 510.
Boutwell (1912) USGS Professional Paper 77: 111.
Friedrich (1912) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 621.
Dübigk (1913) Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, Beil.-Bd., Heidelberg, Stuttgart: 36: 214.
Goldschmidt, V. (1913) Atlas der Krystallformen. 9 volumes, atlas, and text, vol. 2: 107.
Pilipenko (1915) Bulletin of the Imperial Tomsk University: no. 63 [Min. Abs.: 2: 111 (1923)].
Schrader (1917) USGS Bulletin 624.
Ledoux and Walker (1918) Ottawa Nat.: 32: 7.
Buttgenbach (1920) Bulletin de la Société française de Minéralogie: 43: 24.
Stevanovic (1922) Ann. géol. pénin. Balkan.: 7: 85.
Billows (1923) Att. Accad. Veneto.: 14[3]: 89.
Maier (1923) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 58: 75.
Sève (1923) Bulletin de la Société française de Minéralogie: 46: 34.
Barthoux (1924) Bulletin de la Société française de Minéralogie: 47: 36.
Hintze, Carl (1926) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1[3A]: 3045.
Shannon (1926) U.S. National Museum Bulletin 131: 240.
Smith (1926) New South Wales Department of Mines, Mineral Resources, no. 34: 93.
Tokody (1926) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 63: 385.
O'Daniel (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 74: 333.
Laskiewicz (1931) Archiwum Mineralogiczne (Towarzystwo Naukowe Warszawsie): 7: 147.
Colby and La Coste (1933) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 84: 300.
Garrido (1934) Bol. Soc. espan. Hist. nat.: 34: 301.
Vavrinecz (1934) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 89: 521.
Rottenbach (1937) Inaugural Dissertaton, Bonn.
Tokody (1937) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 96: 325.
Lindsay and Hoyt (1938) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 100: 360.
Tokody (1942) Magyar Tudom. Akad. Mat. Termeszett. Ertisitö, Budapest: 61: 1116.
Amaral (1948) Min. e met., Rio de Janeiro: 13: 59.
Palache, C., Berman, H., & Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: 200-207.
Grisafe, D.A., White, W.B. (1964): Phase relations in the system PbO-CO2 and the decomposition of cerussite. The American Mineralogist: 49: 1184-1198.
Reviews in Mineralogy, Mineralogical Society of America: 11.
Sahl, K. (1974) Verfeinerung der Kristallstruktur von Cerussit, PbCO3. Zeitschrift für Kristallographie, 139, 215-222.
Chevrier, G., G. Giester, G. Heger, D. Jarosch, M. Wildner, and J. Zemann (1992) Neutron single-crystal refinement of cerussite, PbCO3, and comparison with other aragonite-type carbonates. Zeitschrift für Kristallographie 199, 67-74.
Martens, W. N.; Rintoul, L.; Kloprogge, J. T.; Frost, R. L. (2004) Single crystal Raman spectroscopy of cerussite. American Mineralogist 89, 352-358.
Alexander A. Kaminskii, Ladislav Bohatý, Hanjo Rhee, André Kaltenbach, Oliver Lux, Hans J. Eichler, Reinhard Rückamp and Petra Becker (2013) Cerussite, PbCO3 - a new Stimulated Raman Scattering (SRS)-active crystal with high-order Stokes and anti-Stokes lasing. Laser Photonics Rev. 7, 425-431.

Internet Links for CerussiteHide

Localities for CerussiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow

This section is currently hidden. Click the show button to view.