SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Bornite

This page kindly sponsored by Mark Kucera
Hide all sections | Show all sections

About BorniteHide

05119320014946260379425.jpg
Ignaz von Born
Formula:
Cu5FeS4
Colour:
Copper-red to pinchbeck-brown, quickly tarnishing to an iridescent purplish surface.
Lustre:
Metallic
Hardness:
3
Specific Gravity:
5.06 - 5.09
Crystal System:
Orthorhombic
Name:
Originally included with kupferkies in 1725 by Johann Friedrich Henckel. Later assigned various multi-word Latin names by Johan Gottschalk Wallerius in 1747 and variously further translated including "purple copper ore" and "variegated copper ore" in 1802 by Rene Just Haüy. Also called as buntkupfererz by Abraham Gottlieb Werner in 1791. Named "phillipsite" in 1832 by Wilhelm Sulpice Beudant. Renamed 1845 by Wilhelm Karl von Haidinger in honor of Ignaz von Born (1742-1791), Austrian mineralogist and invertebrate zoologist.
Important copper ore.
Typically found as massive metallic material, it has a copper-red color on fresh exposures which quickly tarnishes to an iridescent purple after exposure to air and moisture.
May be confused with tarnished chalcopyrite.

In the Zechstein deposits of Poland there are six varieties: pink-orange, pink-violet, pink-gray, pink-creamy, half-bornite and quatr-bornite.


Classification of BorniteHide

Approved, 'Grandfathered' (first described prior to 1959)
Approval Year:
1962
2.BA.15

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
B : Metal Sulfides, M: S > 1: 1 (mainly 2: 1)
A : With Cu, Ag, Au
Dana 7th ed.:
2.5.2.1
2.5.2.1

2 : SULFIDES
5 : AmBnXp, with (m+n):p = 3:2
3.1.23

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
1 : Sulphides etc. of Cu

Physical Properties of BorniteHide

Metallic
Transparency:
Opaque
Colour:
Copper-red to pinchbeck-brown, quickly tarnishing to an iridescent purplish surface.
Streak:
Grey-Black
Hardness:
Hardness:
VHN100=92 kg/mm2 - Vickers
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
In traces on {111}.
Parting:
None.
Fracture:
Irregular/Uneven
Density:
5.06 - 5.09 g/cm3 (Measured)    5.09 g/cm3 (Calculated)

Optical Data of BorniteHide

Anisotropism:
Weak
Colour in reflected light:
Copper-red.
Internal Reflections:
Purplish iridescence.
Pleochroism:
Weak

Chemical Properties of BorniteHide

Formula:
Cu5FeS4
Common Impurities:
Ag,Ge,Bi,In,Pb

Crystallography of BorniteHide

Crystal System:
Orthorhombic
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Space Group:
Pbca
Cell Parameters:
a = 10.95 Å, b = 21.862 Å, c = 10.95 Å
Ratio:
a:b:c = 0.501 : 1 : 0.501
Unit Cell V:
2621.31 ų
Z:
16
Morphology:
Crystals rare, usually blocky with rough curved faces, pseudo-cubic, pseudo-dodecohedral and rarely pseudo-octahedral. Forms noted: {001}, {011}, {111}, {112}, {223} and {335}.
Twinning:
On {111}, often as penetration twins.
Comment:
Various, mostly temperature-dependent supercells are known.

Crystallographic forms of BorniteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Bornite no.1 - Goldschmidt (1913-1926)
Bornite no.5 - Goldschmidt (1913-1926)
Bornite no.7 - Goldschmidt (1913-1926)
Bornite no.10 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indices | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000048BorniteTunell G, Adams C E (1949) On the symmetry and crystal structure of bornite American Mineralogist 34 824-82919490293
0003821BorniteDing Y, Veblen D R, Prewitt C T (2005) High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4 American Mineralogist 90 1256-126420050293
0003822BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0003823BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0003824BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0003825BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0005156BorniteKanazawa Y, Koto K, Morimoto N (1978) Bornite (Cu5FeS4): Stability and crystal structure of the intermediate form The Canadian Mineralogist 16 397-40419780293
0009281BorniteMorimoto N (1964) Structures of two polymorphic forms of Cu5FeS4 Acta Crystallographica 17 351-3601964synthetic0293
0009542BorniteKoto K, Morimoto N (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function Acta Crystallographica B31 2268-22731975Cornwall, England0293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
d-spacingIntensity
3.31Å(40)
3.18Å(60)
2.74Å(50)
2.50Å(40)
1.94Å(100)
1.65Å(30)
1.26Å(50)
1.12Å(5)

Geological EnvironmentHide

Geological Setting:
Common and widespread in copper ore deposits. It also occurs in basic intrusives, in dikes, in contact metamorphic deposits, in quartz veins, and in pegmatites.

Type Occurrence of BorniteHide

Synonyms of BorniteHide

Other Language Names for BorniteHide

Varieties of BorniteHide

Half-BorniteA variety from Zechstein copper deposits of the Fore-Sudetic Monocline, Poland; characterized by a 50% deficit in Fe.
Compare the variety Quatr-Bornite.
Quatr-BorniteA variety from Zechstein copper deposits of the Fore-Sudetic Monocline, Poland; characterized by a 75% deficit in Fe.
Compare the variety Half-Bornite.
Silver-bearing BorniteA silver-bearing variety of bornite.

Common AssociatesHide

Associated Minerals Based on Photo Data:
187 photos of Bornite associated with QuartzSiO2
159 photos of Bornite associated with ChalcopyriteCuFeS2
92 photos of Bornite associated with ChalcociteCu2S
75 photos of Bornite associated with PyriteFeS2
72 photos of Bornite associated with CalciteCaCO3
63 photos of Bornite associated with SilverAg
40 photos of Bornite associated with MalachiteCu2(CO3)(OH)2
35 photos of Bornite associated with CovelliteCuS
35 photos of Bornite associated with Tennantite SubgroupCu6(Cu4C2+2)As4S12S
31 photos of Bornite associated with SphaleriteZnS

Related Minerals - Nickel-Strunz GroupingHide

2.BA.AlburniteAg8GeTe2S4Iso.
2.BA.DzierżanowskiteCaCu2S2Trig. 3m (3 2/m) : P3m1
2.BA.05ChalcociteCu2SMon. 2/m : P21/b
2.BA.05DjurleiteCu31S16Mon. 2/m
2.BA.05GeeriteCu8S5Trig. 3
2.BA.05RoxbyiteCu9S5Tric. 1 : P1
2.BA.10AniliteCu7S4Orth. mmm (2/m 2/m 2/m) : Pnma
2.BA.10DigeniteCu9S5Trig. 3m (3 2/m) : R3m
2.BA.20BellidoiteCu2SeTet. 4/m : P42/n
2.BA.20BerzelianiteCu2SeIso. m3m (4/m 3 2/m) : Fm3m
2.BA.25AthabascaiteCu5Se4Orth.
2.BA.25UmangiteCu3Se2Tet.
2.BA.30RickarditeCu7Te5Orth.
2.BA.30WeissiteCu2-xTeHex.
2.BA.35AcanthiteAg2SMon. 2/m : P21/m
2.BA.40MckinstryiteAg5-xCu3+xS4Orth. mmm (2/m 2/m 2/m) : Pnma
2.BA.40StromeyeriteAgCuSOrth. mmm (2/m 2/m 2/m)
2.BA.40dUM2003-13-S:AgAuCuAg6AuCu2S5
2.BA.45JalpaiteAg3CuS2Tet.
2.BA.45SelenojalpaiteAg3CuSe2Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
2.BA.50EucairiteAgCuSeOrth.
2.BA.55AguilariteAg4SeSMon. 2/m
2.BA.55NaumanniteAg2SeOrth. 2 2 2 : P21 21 21
2.BA.60CervelleiteAg4TeSMon. 2/m
2.BA.60HessiteAg2TeMon. 2/m : P21/b
2.BA.60ChenguodaiteAg9Fe3+Te2S4Orth.
2.BA.65Henryite(Cu,Ag)3+xTe2 , with x ~ 0.40 Iso. m3m (4/m 3 2/m) : Fd3c
2.BA.65StütziteAg5-xTe3, x = 0.24-0.36Hex. 6 : P6
2.BA.70ArgyroditeAg8GeS6Orth. mm2 : Pna21
2.BA.70CanfielditeAg8SnS6Orth. mm2
2.BA.70Putzite(Cu4.7Ag3.3)GeS6Iso. 4 3m : F4 3m
2.BA.75FischesseriteAg3AuSe2Iso. 4 3 2 : I41 3 2
2.BA.75Penzhinite(Ag,Cu)4Au(S,Se)4Hex.
2.BA.75PetrovskaiteAuAgSMon.
2.BA.75PetziteAg3AuTe2Iso. 4 3 2 : I41 3 2
2.BA.75UytenbogaardtiteAg3AuS2Trig. 3m (3 2/m) : R3c
2.BA.80Bezsmertnovite(Au,Ag)4Cu(Te,Pb)Orth.
2.BA.80BilibinskitePbCu2Au3Te2Iso.
2.BA.80Bogdanovite(Au,Te,Pb)3(Cu,Fe)Iso.

Related Minerals - Dana Grouping (8th Ed.)Hide

2.5.2.2CalvertiteCu5Ge0.5S4Iso. 4 3m : F4 3m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

3.1.1ChalcociteCu2SMon. 2/m : P21/b
3.1.2DjurleiteCu31S16Mon. 2/m
3.1.3DigeniteCu9S5Trig. 3m (3 2/m) : R3m
3.1.4AniliteCu7S4Orth. mmm (2/m 2/m 2/m) : Pnma
3.1.5RoxbyiteCu9S5Tric. 1 : P1
3.1.6SpionkopiteCu39S28Trig.
3.1.7GeeriteCu8S5Trig. 3
3.1.8CovelliteCuSHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
3.1.9BerzelianiteCu2SeIso. m3m (4/m 3 2/m) : Fm3m
3.1.10BellidoiteCu2SeTet. 4/m : P42/n
3.1.11UmangiteCu3Se2Tet.
3.1.12YarrowiteCu9S8Trig.
3.1.13AthabascaiteCu5Se4Orth.
3.1.14KlockmanniteCuSeHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
3.1.15Krut'aiteCuSe2Iso. m3 (2/m 3) : Pa3
3.1.16WeissiteCu2-xTeHex.
3.1.17RickarditeCu7Te5Orth.
3.1.18VulcaniteCuTeOrth.
3.1.19BambollaiteCu(Se,Te)2Tet.
3.1.20LautiteCuAsSOrth. mmm (2/m 2/m 2/m) : Pnma
3.1.21MgriiteCu3AsSe3Iso. m3m (4/m 3 2/m)
3.1.22CubaniteCuFe2S3Orth. mmm (2/m 2/m 2/m)
3.1.24FukuchiliteCu3FeS8Iso. m3 (2/m 3) : Pa3
3.1.25ChalcopyriteCuFeS2Tet. 4 2m : I4 2d
3.1.26MooihoekiteCu9Fe9S16Tet.
3.1.27HaycockiteCu4Fe5S8Orth. 2 2 2
3.1.28IsocubaniteCuFe2S3Iso. m3m (4/m 3 2/m) : Fm3m
3.1.29IdaiteCu5FeS6Hex.
3.1.30NukundamiteCu3.33Fe0.66S4Trig. 3m (3 2/m) : P3m1
3.1.31PutoraniteCu1.1Fe1.2S2Iso.
3.1.32Orickite2CuFeS2 · H2OHex.
3.1.33EskeborniteCuFeSe2Tet.
3.1.34Chaméanite(Cu,Fe)4As(Se,S)4Iso.
3.1.35TalnakhiteCu9(Fe,Ni)8S16Iso. 4 3m : I4 3m

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
A major ore of copper.

Bornite in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for BorniteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Palache, Charles, Harry Berman & Clifford Frondel (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 195-197.
Acta Crystallographica: 17: 351-360.
Cuthbert, M.E. (1962) Formation of bornite at atmospheric temperature and pressure. Economic Geology: 57: 38-41.
Ramdohr, Paul (1969) The Ore Minerals and their Intergrowths, Pergamon Press, pp. 1174.
Koto, K. and Morimoto, N. (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Crystallographica, B31, 2268-2273.
Kanazawa, Y., Koto, K., Morimoto, N. (1978) Bornite (Cu5FeS4): stability and crystal structure of the intermediate form. Canadian Mineralogist, 16, 397-404.
Pierce, L. & Buseck, P. R. (1978) Superstructuring in the bornite-digenite series: a high-resolution electron microscopy study. American Mineralogist 63, 1-16.
Jagadeesh, M.S., Nagarathna, H.M., Montano, P.A., and Seehra, M.S. (1981) Magnetic and Mössbauer studies of phase transitions and mixed valences in bornite (Cu4.5Fe1.2S4.7). Phys. Rev.: B23: 2350-2356.
Buckley, A.N. and Woods, R. (1983) An X-ray photoelectron spectroscopic investigation of the tarnishing of bornite. Australian Journal of Chemistry: 36: 1793-1804.
Robie, R.A., Wiggins, L.B., Barton, P.B., Jr., and Hemingway, B.S. (1985) Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4). Journal of Chemical Thermodynamics: 17: 481-488.
Vaughan, D.J., Tossell, J.A., and Stanley, C.J. (1987) The surface properties of bornite. Mineralogical Magazine: 51: 285-293.
Kratz, T. & Fuess, H. (1989) Simultane Strukturbestimmung von Kupferkies und Bornit an einem Kristall. Zeitschrift für Kristallographie, 186, 167-169.
Piestrzyński, A. (Main Ed.), Zaleska-Kuczmierczyk, M., Jasiński, A.W., Kotarski, J., Maślanka, W., Siewierski, S., Speczik, S., Śmieszek, Z. (1996) Monografia KGHM Polska Miedź S.A. Lubin., 1204 pp.
Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th. edition: 52.
Grguric, B. A. & Putnis, A. (1998) Compositional controls on phase-transition temperatures in bornite: a differential scanning calorimetry study. Canadian Mineralogist, 36, 215-227.
Ding, Y., Veblen, D. R., Prewitt, C. T. (2005) High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4. American Mineralogist, 90, 1256-1264.
Harmer, S.L., Pratt, A.R., Nesbitt, H.W., and Fleet, M.E. (2005) Reconstruction of fracture surfaces on bornite. Canadian Mineralogist, 43, 1619-1630.
Cook, N. J., Ciobanu, C. L., Danyushevsky, L. V., Gilbert, S. (2011) Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 75, 6473-6496.
Ciobanu, C. L., Cook, N. J., Ehrig, K. (2017) Ore minerals down to the nanoscale: Cu-(Fe)-sulphides from the iron oxide copper gold deposit at Olympic Dam, South Australia. Ore Geology Review 81, 1218-1235. [on non-stoichiometry].
Zhao, J., Brugger, J., Grguric, B. A., Ngothai, Y., Pring, A. (2017): Fluid-enhanced coarsening of mineral microstructures in hydrothermally synthesized bornite-digenite solid solution. ACS Earth and Space Chemistry 1, 465-474.
Li, K., Brugger, J., Pring, A. (2018): Exsolution of chalcopyrite from bornite-digenite solid solution: an example of a fluid-driven back-replacement reaction. Mineralium Deposita, 53, 903-908.
M. Borgheresi, F. Di Benedetto, M. Romanelli, M. Reissner, W. Lottermoser, R. R. Gainov, R. R. Khassanov, G. Tippelt, A. Giaccherini, L. Sorace, G. Montegrossi, R. Wagner, G. Amthauer (2018): Mössbauer study of bornite and chemical bonding in Fe-bearing sulphides. Phys. Chem. Minerals 45, 227-235.

Internet Links for BorniteHide

Localities for BorniteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow

This section is currently hidden. Click the show button to view.