SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Katophorite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About KatophoriteHide

Formula:
{Na}{CaNa}{Mg4Al}[(AlSi7)O22](OH)2
The katophorite group minerals are sodium-calcium amphiboles defined with A(Na+K+2Ca)> 0.5 apfu and 0.5 apfu < C(Al+Fe3++2Ti) < 1.5 apfu.

katophorite is defined with

A position: Na dominant
C2+ position: Mg dominant
C3+ position: Al dominant
W position: (OH) dominant
Lustre:
Vitreous
Hardness:
5
Crystal System:
Monoclinic
Name:
The name katophorite was first used by W.C.Brøgger (1894) for an amphibole mineral that were found and described by him from three different localities in the Permian Oslo Region, Norway a) from a grorudite at Grussletten, Grorud, Oslo; b) from sølvbergite along the Kjose-Oklungen Railway, Vestfold and from a sølvbergite boulder found in Lågendalen, Vestfold.

The name is derived from the greek κατώφορος for moving down, in allusion to the alteration of the position of the optic Z-axis relative to the c-axis with a chemical variation toward arfvedsonite.

Katophorite was defined as the katophorite group mineral with Fe and Al as the dominant elements in the C position in the 1978 and 1997 amphibole nomenclature. The katophorite group was redefined in the 2012 amphibole nomenclature, renaming the Fe2+ and Al dominant member of the group ferro-katophorite.

The name katophorite is now used for the Mg and Al dominant member of the group, which was named magnesiokatophorite in the 1978 and 1997 amphibole nomenclature.
It was redefined according to the new nomenclature by Oberti et al. 2014 (IMA2013-140) based on a specimen from Jade Mine Tract, Kachin Province, Myanmar.
NOTE: All localities and photos listed here under "katophorite" should be checked if they are to be assigned to katophorite according to the redefinition.
NOTE 2: The mineral originally designated by Brøgger (1894) as "katophorite" is now classified as ferro-katophorite according to the new amphibole classification.


Classification of KatophoriteHide

Approved
Notes:
Renamed by the IMA
Approval History:
Renamed by IMA: 2012
9.DE.20

9 : SILICATES (Germanates)
D : Inosilicates
E : Inosilicates with 2-periodic double chains, Si4O11; Clinoamphiboles
66.1.3b.11

66 : INOSILICATES Double-Width,Unbranched Chains,(W=2)
1 : Amphiboles - Mg-Fe-Mn-Li subgroup
16.11.14

16 : Silicates Containing Aluminum and other Metals
11 : Aluminosilicates of Ca and Mg with or without alkalis

Physical Properties of KatophoriteHide

Vitreous
Hardness:

Optical Data of KatophoriteHide

Type:
Biaxial (-)
RI values:
nα = 1.640 - 1.681 nβ = 1.658 - 1.688 nγ = 1.660 - 1.692
2V:
Measured: 73° (1), Calculated: 70°
Max Birefringence:
δ = 0.020
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
High
Dispersion:
r < v strong
Pleochroism:
Visible
Comments:
X = pale blue (medium), Y = light blue-green (strongest), Z = colourless

Chemical Properties of KatophoriteHide

Formula:
{Na}{CaNa}{Mg4Al}[(AlSi7)O22](OH)2

The katophorite group minerals are sodium-calcium amphiboles defined with A(Na+K+2Ca)> 0.5 apfu and 0.5 apfu < C(Al+Fe3++2Ti) < 1.5 apfu.

katophorite is defined with

A position: Na dominant
C2+ position: Mg dominant
C3+ position: Al dominant
W position: (OH) dominant
IMA Formula:
Na(NaCa)(Mg4Al)(Si7Al)O22(OH)2

Crystallography of KatophoriteHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
B2/m
Setting:
C2/m
Cell Parameters:
a = 9.8573(8) Å, b = 17.962(1) Å, c = 5.2833(4) Å
β = 104.707(2)°
Ratio:
a:b:c = 0.549 : 1 : 0.294
Unit Cell V:
904.80 ų (Calculated from Unit Cell)
Z:
2

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0005492KatophoriteHawthorne F C, Oberti R, Sardone N (1996) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order The Canadian Mineralogist 34 577-59319960293
0005493KatophoriteHawthorne F C, Oberti R, Sardone N (1996) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order The Canadian Mineralogist 34 577-59319960293
0006115KatophoriteHawthorne F C, Oberti R, Martin R F (2006) Short-range order in amphiboles from the Bear Lake diggings, Ontario The Canadian Mineralogist 44 1171-11792006Bear Lake diggings, Bancroft area of Ontario, Canada0293
0020689KatophoriteOberti R, Boiocchi M, Hawthorne F C, Ball N A, Harlow G E (2015) Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare (grandfathered) endmember of the amphibole supergroup Mineralogical Magazine 79 355-3632015near Hpakan, Jade Mine Tract, Kachin State, Myanmar0293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
8.421Å(55)
3.378Å(61)
3.129Å(69)
2.942Å(43)
2.700Å(100)
2.583Å(46)
2.536Å(65)
2.334Å(41)

Type Occurrence of KatophoriteHide

Place of Conservation of Type Material:
Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY, USA, catalogue number H32374

Synonyms of KatophoriteHide

Other Language Names for KatophoriteHide

Relationship of Katophorite to other SpeciesHide

Other Members of this group:
Ferri-fluoro-katophoriteNa(CaNa)(Mg4Fe3+)(AlSi7O22)F2Mon. 2/m : B2/m
Ferri-katophoriteNa(CaNa)(Mg4Fe3+)(AlSi7O22)(OH)2Mon.
Ferro-ferri-fluoro-katophoriteNa(CaNa)(Fe2+4Fe3+)(AlSi7O22)F2Mon.
Ferro-ferri-katophoriteNa(NaCa)(Fe2+4Fe3+)(Si7Al)O22(OH)2Mon. 2/m : B2/m
Ferro-fluoro-katophoriteNa(CaNa)(Fe2+4Al)(AlSi7O22)F2
Ferro-katophorite{Na}{CaNa}{Fe2+4Al}[(AlSi7)O22](OH)2Mon. 2/m : B2/m
Fluoro-katophoriteNa(CaNa)(Mg4Al)(AlSi7O22)F2Mon.
Potassic-ferri-katophoriteK(CaNa)(Mg4Fe3+)(AlSi7O22)(OH)2
Potassic-ferro-ferri-katophorite{K}{CaNa}{Fe2+4Fe3+}[(AlSi7)O22](OH)2
Potassic-fluoro-katophoriteK(CaNa)(Mg4Al)(AlSi7O22)F2

Common AssociatesHide

Associated Minerals Based on Photo Data:
23 photos of Katophorite associated with Eudialyte(Na3Na3Na3Na3Na3)Ca6(IVFe2+3)Zr3[Si3O9]2[Si9O27SiO][Si9O27SiO]Cl(H2O)
21 photos of Katophorite associated with AlbiteNa(AlSi3O8)
9 photos of Katophorite associated with VlasoviteNa2ZrSi4O11
9 photos of Katophorite associated with GittinsiteCaZrSi2O7
5 photos of Katophorite associated with Mosandrite-(Ce)(Ca3REE)[(H2O)2Ca0.50.5]Ti(Si2O7)2(OH)2(H2O)2
5 photos of Katophorite associated with MiseriteK1.5-x(Ca,Y,REE)5(Si6O15)(Si2O7)(OH,F)2 · yH2O
5 photos of Katophorite associated with ZirconZr(SiO4)
4 photos of Katophorite associated with FluorapatiteCa5(PO4)3F
4 photos of Katophorite associated with AgrelliteNaCa2Si4O10F
3 photos of Katophorite associated with MicroclineK(AlSi3O8)

Related Minerals - Nickel-Strunz GroupingHide

9.DE.Clino-suenoite□{Mn2+2}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.05Cummingtonite☐{Mg2}{Mg5}(Si8O22)(OH)2Mon.
9.DE.05Clino-holmquistite Root Name Group☐{Li2}{Z2+3Z3+2}(Si8O22)(OH,F,Cl)2Mon.
9.DE.05Grunerite☐{Fe2+2}{Fe2+5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.05Permanganogrunerite☐{Mn2+2}{Mn2+5}(Si8O22)(OH)2Mon.
9.DE.05Ferri-fluoro-leakeite{Na}{Na2}{Mg2Fe3+2Li}(Si8O22)F2Mon. 2/m : B2/m
9.DE.10Actinolite☐Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2Mon. 2/m : B2/m
9.DE.10Ferri-tschermakite☐{Ca2}{Mg3Fe3+2}(Al2Si6O22)(OH)2Mon.
9.DE.10Ferro-actinolite☐Ca2Fe2+5(Si8O22)OH2Mon.
9.DE.10Ferro-hornblende☐Ca2(Fe2+4Al)(Si7Al)O22(OH)2Mon.
9.DE.10Ferro-tschermakite☐{Ca2}{Fe2+3Al2}(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.10JoesmithitePb2+Ca2(Mg3Fe3+2)(Si6Be2)O22(OH)2Mon.
9.DE.10Magnesio-hornblende☐Ca2(Mg4Al)(Si7Al)O22(OH)2Mon. 2/m : B2/m
9.DE.10Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.10Tschermakite☐(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.10CannilloiteCaCa2(Mg4Al)(Si5Al3O22)OH2Mon.
9.DE.10Fluoro-cannilloiteCaCa2(Mg4Al)(Si5Al3)O22F2Mon.
9.DE.10Parvo-manganotremolite☐{CaMn2+}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.10Fluoro-tremolite☐{Ca2}{Mg5}(Si8O22)F2Mon. 2/m : B2/m
9.DE.10Ferro-ferri-hornblende☐Ca2(Fe2+4Fe3+)(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.15EdeniteNaCa2Mg5(Si7Al)O22OH2Mon.
9.DE.15Ferro-edeniteNaCa2Fe2+5(Si7Al)O22OH2Mon.
9.DE.15Ferro-kaersutiteNaCa2{Fe2+3AlTi}(Si6Al2O22)O2Mon.
9.DE.15Ferro-pargasiteNaCa2(Fe2+4Al)(Si6Al2)O22(OH)2Mon.
9.DE.15HastingsiteNaCa2(Fe2+4Fe3+)(Si6Al2)O22OH2Mon.
9.DE.15KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2Mon.
9.DE.15Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2Mon.
9.DE.15PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2Mon. 2/m : B2/m
9.DE.15Sadanagaite{Na}{Ca2}{Mg3Al2}(Si5Al3O22)(OH)2Mon.
9.DE.15Fluoro-edeniteNaCa2Mg5(Si7Al)O22F2Mon. 2/m : P2/m
9.DE.15Potassic-ferro-ferri-sadanagaite{K}{Ca2}{Fe2+3Fe3+2}(Al3Si5O22)(OH)2Mon.
9.DE.15Potassic-sadanagaite{K}{Ca2}{Mg3Al2}(Al3Si5O22)(OH)2Mon.
9.DE.15Potassic-pargasiteKCa2(Mg4Al)(Si6Al2)O22(OH)2Mon.
9.DE.15Potassic-ferro-sadanagaite{K}{Ca2}{Fe2+3Al2}(Al3Si5O22)(OH)2Mon.
9.DE.15Magnesio-fluoro-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Potassic-fluoro-hastingsiteKCa2(Fe2+4Fe3+)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Potassic-chloro-hastingsiteKCa2(Fe2+4Fe3+)(Si6Al2)O22Cl2Mon. 2/m : B2/m
9.DE.15Fluoro-pargasiteNaCa2(Mg4Al)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Parvo-mangano-edenite{Na}{CaMn2+}{Mg5}(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.15Potassic-chloro-pargasiteKCa2(Mg4Al)(Si6Al2)O22Cl2Mon. 2/m : B2/m
9.DE.15Potassic-ferro-chloro-edeniteKCa2Fe2+5(AlSi7O22)Cl2
9.DE.15Potassic-magnesio-hastingsiteKCa2(Mg4Fe3+)(Si6Al2)O22(OH)2Mon. 2/m : B2/m
9.DE.15Potassic-ferro-pargasiteKCa2(Fe2+4Al)(Si6Al2)O22(OH)2Mon. 2/m : B2/m
9.DE.15Chromio-pargasite{Na}{Ca2}{Mg4Cr3+}(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.15Potassic-fluoro-pargasiteKCa2(Mg4Al)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Ferri-kaersutiteNaCa2(Mg3Fe3+Ti)(Si6Al2O22)O2Mon. 2/m : B2/m
9.DE.15Vanadio-pargasiteNaCa2(Mg3+4V)(Al2Si6)O22(OH)2Mon. 2/m : B2/m
9.DE.20Ferro-taramiteNa(CaNa)(Fe2+3Al2)(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.20Barroisite☐{CaNa}{Mg3Al2}(AlSi7O22)(OH)2Mon.
9.DE.20Ferro-ferri-barroisite☐(CaNa)(Fe2+3Fe3+2)(AlSi7O22)(OH)2
9.DE.20Ferro-ferri-winchite☐[CaNa][Fe2+4(Fe3+,Al)]Si8O22(OH)2
9.DE.20Ferri-barroisite☐(CaNa)(Mg3Fe3+2)(AlSi7O22)(OH)2
9.DE.20Ferro-ferri-taramiteNa(CaNa)(Fe2+3Fe3+2)(Al2Si6O22)(OH)2
9.DE.20Ferro-ferri-katophoriteNa(NaCa)(Fe2+4Fe3+)(Si7Al)O22(OH)2Mon. 2/m : B2/m
9.DE.20Ferro-barroisite☐{CaNa}{Fe2+3Al2}(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.20Ferro-richterite{Na}{CaNa}{Fe2+5}(Si8O22)(OH)2Mon.
9.DE.20Ferro-winchite ☐{CaNa}{Fe2+4Al}(Si8O22)(OH)2Mon.
9.DE.20Ferro-katophorite{Na}{CaNa}{Fe2+4Al}[(AlSi7)O22](OH)2Mon. 2/m : B2/m
9.DE.20Ferri-katophoriteNa(CaNa)(Mg4Fe3+)(AlSi7O22)(OH)2Mon.
9.DE.20Ferri-taramiteNa(CaNa)(Mg3Fe3+2)(Al2Si6O22)(OH)2Mon.
9.DE.20Magnesiotaramite{Na}{CaNa}{Mg3AlFe3+}(Al2Si6O22)(OH)2Mon.
9.DE.20Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.20Winchite☐{CaNa}{Mg4Al}(Si8O22)(OH)2Mon. 2/m
9.DE.20Taramite{Na}{CaNa}{Mg3Al2}(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.20Fluoro-richterite{Na}{CaNa}{Mg5}(Si8O22)(F,OH)2Mon. 2/m
9.DE.20Potassic-fluoro-richterite{K}{CaNa}{Mg5}(Si8O22)(F,OH)2Mon.
9.DE.20Potassic-richterite{K}{CaNa}{Mg5}Si8O22(OH)2Mon. 2/m : B2/m
9.DE.20Ferri-ghoseite☐[Mn2+Na][Mg4Fe3+]Si8O22(OH)2Mon. 2/m
9.DE.20Ferri-winchite☐[CaNa][Mg4(Fe3+,Al)]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.20Fluoro-taramite{Na}{CaNa}{Mg3Al2}(Al2Si6O22)F2Mon. 2/m : B2/m
9.DE.20Fluoro-katophoriteNa(CaNa)(Mg4Al)(AlSi7O22)F2Mon.
9.DE.20Ferri-fluoro-katophoriteNa(CaNa)(Mg4Fe3+)(AlSi7O22)F2Mon. 2/m : B2/m
9.DE.25Arfvedsonite[Na][Na2][Fe2+4Fe3+]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25EckermanniteNaNa2(Mg4Al}Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Ferro-eckermanniteNaNa2(Fe2+4Al)Si8O22(OH)2Mon.
9.DE.25Ferro-glaucophane◻[Na2][Fe2+3Al2]Si8O22(OH)2Mon.
9.DE.25Glaucophane◻[Na2][Mg3Al2]Si8O22(OH)2Mon.
9.DE.25Potassic-mangani-leakeite[(Na,K)][Na2][Mg2Mn3+2Li]Si8O22(OH)2Mon.
9.DE.25Mangano-ferri-eckermannite{Na}{Na2}{Mn2+4Fe3+}Si8O22(OH)2Mon.
9.DE.25Ferri-leakeite[Na][Na2][Mg2Fe3+2Li]Si8O22(OH)2Mon.
9.DE.25Magnesio-riebeckite◻{Na2}{Mg3Fe3+2}(Si8O22)(OH)2Mon.
9.DE.25Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.25NybøiteNaNa2(Mg3Al2)(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.25Riebeckite◻[Na2][Fe2+3Fe3+2]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Mangano-mangani-ungarettiiteNaNa2(Mn2+2Mn3+3)(Si8O22)O2Mon.
9.DE.25Ferro-ferri-nybøiteNaNa2[(Fe2+3,Mg)Fe3+2](AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.25Clino-ferro-ferri-holmquistite◻{Li2}{Fe2+3Fe3+2}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.25Ferri-nybøiteNaNa2(Mg3Fe3+2](AlSi7O22)(OH)2Mon.
9.DE.25Ferro-ferri-leakeite[Na][Na2][Fe2+2Fe3+2Li]Si8O22(OH)2Mon.
9.DE.25Ferro-ferri-fluoro-leakeiteNa(Na2)(Fe2+2Fe3+2Li)(Si8O22)(F)2Mon.
9.DE.25Sodic-ferri-clinoferroholmquistiteNa0.5{Li2}{Fe2+3Fe3+2}(Si8O22)(OH)2Mon.
9.DE.25Magnesio-fluoro-arfvedsonite[Na][Na2][Mg4Fe3+][Si8O22](F,OH)2Mon.
9.DE.25Ferri-pedrizite[Na][Li2][Mg2Fe3+2Li]Si8O22(OH)2Mon.
9.DE.25Potassic-ferri-leakeite[K][Na2][Mg2Fe3+2Li]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Fluoro-nybøiteNaNa2(Mg3Al2)(AlSi7O22)(F,OH)2Mon. 2/m : B2/m
9.DE.25Mangani-dellaventuraiteNaNa2(MgMn3+2Ti4+Li)Si8O22O2Mon. 2/m : B2/m
9.DE.25Fluoro-pedriziteNaLi2(Mg2Al2Li)(Si8O22)F2Mon. 2/m : B2/m
9.DE.25Potassic-arfvedsonite[(K,Na)][Na2][Fe2+4Fe3+]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Mangani-obertiiteNaNa2(Mg3Mn3+Ti4+)Si8O22O2Mon. 2/m : B2/m
9.DE.25Potassic-magnesio-fluoro-arfvedsonite[(K,Na)][Na2][Mg4Fe3+][Si8O22][(F,OH)2]Mon. 2/m : B2/m
9.DE.25Ferro-ferri-pedrizite[Na][Li2][Fe2+2Fe3+2Li]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Potassic-magnesio-arfvedsonite[K][Na2][Mg4Fe3+]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25PedriziteNaLi2(LiMg2Al2)(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.25Ferro-pedriziteNaLi2(Fe2+2Al2Li)Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Ferro-fluoro-pedrizite{Na}{Li2}{Fe2Al2Li}(Al2Si6O22)F2Mon. 2/m : B2/m
9.DE.25Fluoro-leakeiteNaNa2(Mg2Al2Li)(Si8O22)F2Mon. 2/m : B2/m
9.DE.25Ferro-ferri-obertiiteNaNa2(Fe2+3Fe3+Ti)Si8O22O2Mon. 2/m : B2/m
9.DE.25Ferri-obertiiteNaNa2(Mg3Fe3+Ti)Si8O22O2Mon. 2/m : B2/m

Related Minerals - Dana Grouping (8th Ed.)Hide

66.1.3b.1Winchite☐{CaNa}{Mg4Al}(Si8O22)(OH)2Mon. 2/m
66.1.3b.5Aluminobarroisite☐{CaNa}{Mg3Al2}(AlSi7O22)(OH)2Mon.
66.1.3b.9Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
66.1.3b.15Taramite{Na}{CaNa}{Mg3Al2}(Al2Si6O22)(OH)2Mon. 2/m : B2/m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

16.11.1MadisoniteCa2Mg2Al2Si3O13 or near
16.11.3Alumino-magnesio-hornblende☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2
16.11.4Tschermakite☐(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2Mon. 2/m : B2/m
16.11.5ClintoniteCa(Mg,Al)3(Al3SiO10)(OH)2Mon. 2/m : B2/m
16.11.6JuaniteCa10Mg4Al2Si11O39 · 4H2O or near
16.11.7Pumpellyite-(Mg)Ca2MgAl2[Si2O6OH][SiO4](OH)2(OH)Mon.
16.11.8TacharaniteCa12Al2Si18O33 (OH)36Mon.
16.11.9Aluminobarroisite☐{CaNa}{Mg3Al2}(AlSi7O22)(OH)2Mon.
16.11.10Taramite{Na}{CaNa}{Mg3Al2}(Al2Si6O22)(OH)2Mon. 2/m : B2/m
16.11.12EdeniteNaCa2Mg5(Si7Al)O22OH2Mon.
16.11.13PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2Mon. 2/m : B2/m
16.11.15Beidellite(Na,Ca0.5)0.3Al2((Si,Al)4O10)(OH)2 · nH2OMon.
16.11.15Magnesiosadanagaite{Na}{Ca2}{Mg3Al2}(Al3Si5O22)(OH)2Mon. 2/m
16.11.16Sadanagaite{Na}{Ca2}{Mg3Al2}(Si5Al3O22)(OH)2Mon.

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Katophorite in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for KatophoriteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Brøgger, W.C. (1894) Die Eruptivgesteine des Kristianiagebietes, I. Die Gesteine der Grorudit-Tinguait-Serie. Videnskabsselkabets Skrifter. I. Mathematisk- Naturv. Klasse: 1894: 4: 1-206. [pp. 27-39]
Deer, et al (1963) volume 2: 359-363.
Leake, B,E. (1978) Nomenclature of amphiboles. American Mineralogist: 63: 1023-1052.
Raade, G. (1996) Minerals originally described from Norway. Including notes on type material. Norsk Bergverksmuseum Skrift: 11: 104 pp. + plates, 1-7.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Guo, Y. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist: 35: 219–246.
Mandarino, J.A. (1998) The Second List of Additions and Corrections to the Glossary of Mineral Species (1995). The Amphibole Group. Mineralogical Record: 29: 169-174.
Hawthorne, F.C., Oberti, R. (2006) On the classification of amphiboles. The Canadian Mineralogist: 44: 1-21.
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist: 97: 2031-2048.
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A., Harlow, G.E.
(2014) Katophorite, IMA 2013-140. CNMNC Newsletter No. 20, June 2014, page 554; Mineralogical Magazine: 78: 549-558.
Oberti, R., Boiocchi, M., Hawthorne, F. C., Ball, N. A., & Harlow, G. E. (2015). Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare (grandfathered) endmember of the amphibole supergroup. Mineralogical Magazine, 79(2), 355-363.

Internet Links for KatophoriteHide

Localities for KatophoriteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Algeria
 
  • Skikda Province
    • Azzaba area
Byramjee R.and Meindre M.(1956): Le gisement de manganèse de Guettara. Symposium du manganèse XX congrès international de géologie,
Angola
 
  • Huíla Province
    • Quilengues
Eur. J. Mineral. , 1993, 5, pp. 1001-1024.
Antarctica
 
  • Eastern Antarctica
    • Queen Maud Land
Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, p. 11
Argentina
 
  • Salta Province
    • Iruya department
Woolley, A.R. (1987) Alkaline rocks and carbonatites of the world. p 163.
Australia
 
  • New South Wales
    • Forbes Co.
      • Grenfell
Oberti, R., Boiocchi, M., Hawthorne, F. C., Ball, N. A., & Ashley, P. M. (2016). PREPUBLICATION: Oxo-mangani-leakeite from the Hoskins mine, New South Wales, Australia: occurrence and mineral description. Mineralogical Magazine.
  • Northern Territory
    • Central Desert Region
      • Alcoota Station
Currie, K.L., Knutson, J., Temby, P.A. (1992) The Mud Tank carbonatite complex, central Australia - an example of metasomatism at mid-crustal levels. Contributions to Mineralogy and Petrology, Vol. 109 (3), pp.326-339.
Black, L. P., LP, B., & BL, G. (1978). The age of the mud tank carbonatite, strangways range, northern territory. BMR Journal of Australian Geology and Geophysics, 3, 227-232. Currie, K. L., Knutson, J., & Temby, P. A. (1992). The Mud Tank carbonatite complex, central Australia—an example of metasomatism at mid-crustal levels. Contributions to Mineralogy and Petrology, 109(3), 326-339. Nelson, D. R., Chivas, A. R., Chappell, B. W., & McCulloch, M. T. (1988). Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1), 1-17. Wilson, A. F. (1979). Contrast in the isotopic composition of oxygen and carbon between the Mud Tank Carbonatite and the marbles in the granulite terrane of the Strangways Range, central Australia. Journal of the Geological Society of Australia, 26(1-2), 39-44.
Bulgaria
 
  • Sofia City Province
    • Svoge Obshtina
Buzzi, L., Gaggero, L., Grozdanov, L., Yanev, S., & Slejko, F. (2010). High-Mg potassic rocks in the Balkan segment of the Variscan belt (Bulgaria): implications for the genesis of orogenic lamproite magmas. Geological Magazine, 147(3), 434-450. Dyulgerov, M. (2005). Le plutonisme de tendance alcalin potassique de Stara planina, Bulgarie: etude petrologique des complexes de Buhovo-Seslavtzi, Svidnya et Shipka (Doctoral dissertation, Paris 11). Dyulgerov, M., Ovtcharova-Schaltegger, M., Ulianov, A., & Schaltegger, U. (2018). Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice: ID-TIMS and LA-ICP-MS study. International Journal of Earth Sciences, 107(4), 1175-1192. Grozdanov, L., Uzunov, K. & Vladykin, N.V. 2006. Chemical composition of zonal amphiboles from Svidnya K-alkaline magmatic rocks. Geochemistry, Mineralogy and Petrology, Sofia, 44, 57-71 [in Russian with English abstract]. Vladykin, N. V., Grozdanov, L. A., & Bonev, I. K. (2001). Chemical composition and geochemical characteristics of the Svidnya magmatic potassic-alkaline association, Western Stara Planina Mountain. Geochemistry, Mineralogy and Petrology, 38, 3-22.
Canada
 
  • British Columbia
    • Kamloops Mining Division
      • Blue River carbonatites
Chudy T, Groat L, Cempírek J (2014) The magmatic evolution of the Fir carbonatite system and implications for Ta enrichment in carbonatites. 21 st meeting of the International Mineralogical Association. p 73
  • Nova Scotia
    • Cumberland Co.
Doucette, C., Pe-Piper, G. (1997) Digitial mapping of the Wentworth plutonic complex, Cobequid Highlans, Nova Scotia, and petrology of its felsic phases. 1997 AGS Abstracts, Atlantic Geology: 33(1): 56.
  • Nunavut
    • Qikiqtaaluk Region
      • Ungava bay
        • Abloviak fjord
Sebastian Tappe, Stephen F. Foley, Bruce A. Kjarsgaard, Rolf L. Romer, Larry M. Heaman, Andreas Stracke, George A. Jenner, Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes, Geochimica et Cosmochimica Acta, Volume 72, Issue 13, 1 July 2008, Pages 3258-3286; Tappe, S., Jenner, G. A., Foley, S. F., Heaman, L., Besserer, D., Kjarsgaard, B. A., & Ryan, B. (2004). Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos, 76(1), 491-518.
  • Ontario
    • Haliburton County
      • Monmouth Township
David K. Joyce specimen
    • Kenora District
      • Ring of Fire
        • BMA527861 Area
Laarman,J.E. 2014. A DETAILED METALLOGENIC STUDY OF THE MCFAULDS LAKE CHROMITE DEPOSITS, NORTHERN ONTARIO , PhD Thesis, University of Western Ontario, London, Ontario, Canada
  • Québec
    • Abitibi-Témiscamingue
      • Témiscamingue RCM
        • Les Lacs-du-Témiscamingue
CURRIE,K.L.& VAN BREEMEN, O. (1996). The origin of rare minerals in the Kipawa syenite complex, Western Quebec. Canadian Mineralogist Vol. 34, pp.435
China
 
  • Henan
    • Xinyang
      • Luoshan Co.
        • Sujiahe
Ratschbacher, L., Franz, L., Enkelmann, E., Jonckheere, R., Pörschke, A., Hacker, B.R., Dong, S., and Zhang, Y. (2006), In: Hacker, B.R., McClelland, W.C., and Liou, J.G. (eds.): Ultrahigh-pressure metamorphism: Deep continental subduction. Geological Society of America Special Paper 403, 45–75.
  • Hunan
    • Changsha
      • Ningxiang City
Mei, H., Tang, C., Li, S., Li, Y., Zhang, X., Lu, D., & Zhang, L. (1998). Lamproites and kimberlites in China and the genesis of diamond deposit. Science in China Series D: Earth Sciences, 41(1), 54-92.
  • Jiangsu
    • Lianyungang
      • Donghai Co.
Rong Yan and Jianjun Yang (2013): Acta Petrologica Sinica 29(5), 1621-1633
  • Qinghai
    • Haixi Mongol and Tibetan Autonomous Prefecture
      • Da Qaidam (Dachaidan Co.)
Chen Danling, Sun Yong, Liu Liang, Zhang Anda, and Lin Ciluan (2007): Science in China, Series D (Earth Sciences), 50(suppl. 2), 322-330.
  • Sichuan
    • Liangshan Yi
      • Xichang County
Shellnutt, J. G., Jahn, B. M., & Dostal, J. (2010). Elemental and Sr–Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119(1-2), 34-46. Shellnutt, J. G., & Iizuka, Y. (2011). Mineralogy from three peralkaline granitic plutons of the Late Permian Emeishan large igneous province (SW China): evidence for contrasting magmatic conditions of A-type granitoids. European Journal of Mineralogy, 23(1), 45-61.
  • Xinjiang
    • Yili Hasake Autonomous Prefecture (Ili Kazakh Autonomous Prefecture)
      • Zhaosu Co.
Xin Liu, Wen Su, Jun Gao, Jilei Li, and Tuo Jiang (2013): Acta Petrologica Sinica 29(5), 1675-1684
  • Zhejiang
    • Hangzhou
      • Xiaoshan District
Li, X-H., Li, W-X., Li, Z.X., Ying, L. (2008) 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102 (1-2), 341-357. Wang, Q., Wyman, D.A., Li, Z.X., Bao, Z.W., Zhao, Z.H., Wang, Y.X., Jian, P., Yang, Y.H., Chen, L.L. (2010) Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research, 178(1-4), 185-208.
Cuba
 
  • Villa Clara Province
Maresch, W. V., Grevel, C., Stanek, K. P., Schertl, H. P., & Carpenter, M. A. (2012). Multiple growth mechanisms of jadeite in Cuban metabasite. European Journal of Mineralogy, 24(2), 217-235.
Denmark
 
Pedersen, A. K., Engell, J., & Rønsbo, J. G. (1975). Early Tertiary volcanism in the Skagerrak: New chemical evidence from ash-layers in the mo-clay of northern Denmark. Lithos, 8(4), 255-268. Rønsbo, J. G., Pedersen, A. K., & Engell, J. (1977). Titan-aegirine from early Tertiary ash layers in northern Denmark. Lithos, 10(3), 193-204.; Pedersen, A. K., Engell, J., & Rønsbo, J. G. (1975). Early Tertiary volcanism in the Skagerrak: New chemical evidence from ash-layers in the mo-clay of northern Denmark. Lithos, 8(4), 255-268. Rønsbo, J. G., Pedersen, A. K., & Engell, J. (1977). Titan-aegirine from early Tertiary ash layers in northern Denmark. Lithos, 10(3), 193-204.; Pedersen, A. K., Engell, J., & Rønsbo, J. G. (1975). Early Tertiary volcanism in the Skagerrak: New chemical evidence from ash-layers in the mo-clay of northern Denmark. Lithos, 8(4), 255-268. Rønsbo, J. G., Pedersen, A. K., & Engell, J. (1977). Titan-aegirine from early Tertiary ash layers in northern Denmark. Lithos, 10(3), 193-204.
Dominican Republic
 
  • María Trinidad Sánchez Province
Krebs, M., Maresch, W. V., Schertl, H. P., Münker, C., Baumann, A., Draper, G., ... & Trapp, E. (2008). The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos, 103(1-2), 106-137.
Germany
 
  • Baden-Württemberg
    • Karlsruhe Region
      • Rhein-Neckar-Kreis
        • Eberbach
Lippolt, H. J., Horn, P., & Todt, W. (1976). Kalium-Argon-Alter von Mineralien und Einschlüssen der Basalt-Vorkommen Katzenbuckel und Roßberg. N Jb Miner Abh, 127(3), 242-260. Mann, U., Marks, M., & Markl, G. (2006). Influence of oxygen fugacity on mineral compositions in peralkaline melts: The Katzenbuckel volcano, Southwest Germany. Lithos, 91(1-4), 262-285. Schmitt, A. K., Marks, M. A., Nesbor, H. D., & Markl, G. (2007). The onset and origin of differentiated Rhine Graben volcanism based on U-Pb ages and oxygen isotopic composition of zircon. European Journal of Mineralogy, 19(6), 849-857. Stähle, V., Koch, M., McCammon, C. A., Mann, U., & Markl, G. (2002). Occurrence of Low-Ti and High-Ti freudenbergite in alkali syenite dikes from the Katzenbuckel volcano, Southwestern Germany. The Canadian Mineralogist, 40(6), 1609-1627. Wagner, C., Velde, D., & Mokhtari, A. (1987). Sector-zoned phlogopites in igneous rocks. Contributions to Mineralogy and Petrology, 96(2), 186-191.
Greece
 
  • South Aegean
    • Tinos
      • Tinos Island
        • Panormos Bay
Gunnar Färber specimens
Greenland
 
  • Kujalleq
    • Igaliku Complex
Schönenberger, J., & Markl, G. (2008). The magmatic and fluid evolution of the Motzfeldt intrusion in South Greenland: insights into the formation of Agpaitic and Miaskitic rocks. Journal of Petrology, 49(9), 1549-1577.
    • Narsaq
Petersen, O.V. (2001): List of all minerals identified in the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin. 190, 25-33
  • Sermersooq
Marks, M., Halama, R., Wenzel, T., & Markl, G. (2004). Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt trace-element partitioning. Chemical Geology, 211(3), 185-215.
India
 
  • Andhra Pradesh
    • Guntur District
Sadashivaiah, M. S., & Reddy, K. G. (1965, February). Aegirine-augite syenite from Gundlapalle, Guntur district, Andhra Pradesh. In Proceedings of the Indian Academy of Sciences-Section A (Vol. 61, No. 2, p. 92). Springer India. Madhavan, V., Mallikharjuna Rao, J., Srinivas, M., Natarajan, R., & Sayeed, A. U. S. A. F. (1994). Petrology and petrogenesis of syenites from the Cuddapah basin, Andhra Pradesh. JOURNAL-GEOLOGICAL SOCIETY OF INDIA, 43, 225-237.
  • Tamil Nadu
    • Krishnagiri District
Natarajana, M., Rao, B. B., Parthasarathy, R., Kumar, A., & Gopalan, K. (1994). 2.0 ga old pyroxenite-carbonatite complex of Hogenakal, Tamil Nadu, south India. Precambrian Research, 65(1-4), 167-181. Srinivasan, V. (1977). The carbonatite of Hogenakal, Tamil Nadu, South India. Geological Society of India, 18(11), 598-604.
  • Telangana
    • Nalgonda District
Kaur, G., & Mitchell, R. H. (2017) Mineralogy of the baotite-bearing Gundrapalli lamproite, Nalgonda district, Telangana, India. 11th International Kimberlite Conference Extended Abstract No. 11IKC-4499, 2017
Kaur, G., Mitchell, R. H., & Ahmed, S. (2016). Typomorphic mineralogy of the Vattikod lamproites from Mesoproterozoic Ramadugu Lamproite Field, Nalgonda District, Telangana, India: A plausible manifestation of subduction-related alkaline magmatism in the Eastern Ghats Mobile Belt?.
  • West Bengal
    • Purulia District
Mineral. Petrol. 95 (2009) 105-112. ; Chakrabarty, A., & Sen, A. K. (2010). Enigmatic association of the carbonatite and alkali-pyroxenite along the Northern Shear Zone, Purulia, West Bengal: A saga of primary magmatic carbonatite. Journal of the Geological Society of India, 76(4), 403-413.
Chakrabarty, A., & Sen, A. K. (2010). Enigmatic association of the carbonatite and alkali-pyroxenite along the Northern Shear Zone, Purulia, West Bengal: a saga of primary magmatic carbonatite. Journal of the Geological Society of India, 76(4), 403-413. Chakrabarty, A., Sen, A. K., & Ghosh, T. K. (2009). Amphibole—a key indicator mineral for petrogenesis of the Purulia carbonatite, West Bengal, India. Mineralogy and Petrology, 95(1-2), 105-112. Ghosh Roy, A. K., & Sengupta, P. R. (1993). Alkalic-carbonatitic magmatism and associated mineralisation along the Porapahar-Tamar lineament in the Proterozoic of Purulia District, West Bengal. Indian journal of earth sciences, 20(3-4), 193-200.
Indonesia
 
  • East Nusa Tenggara Province
Brouwer, H.A. 1927. On the age of alkaline rocks from the Island of Timor. Proceedings. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, 31, 56-58. Roever, W. P. (1940). Olivine-basalts and their alkaline differentiates in the Permian of Timor. In: Geological Expedition of the University of Amsterdam to the Lesser Sunda Islands in the South Eastern Part of the Netherlands East Indies 1937 under Leadership of H.A. Brouwer, 4, 209-289. Simons, A.L. 1940. Geological investigations in N.E. Netherlands Timor. In: Geological Expedition of the University of Amsterdam to the Lesser Sunda Islands in the south eastern part of the Netherlands East Indies 1937 under leadership of H.A.Brouwer, Vol. 1, 107-213.
Japan
 
  • Ehime Prefecture
    • Niihama City
      • Besshi
Introduction to Japanese Minerals (Geological Survey of Japan, 1970)
        • Sebadani
Naohito Kishira, Akira Takasu and Md. Fazle Kabir(2013):Modes of occurrence and chemical compositions of amphiboles. in eclogite from the northeastern part of the Seba eclogitic basic schists in the Sambagawa metamorphic belt, central Shikoku, Japan. Geoscience Rept. Shimane Univ.,vol 32, pp33-42
    • Shikokuchuo City
      • Doi
S. Matsubara, "The Mineral Species of Japan" (Koubutsu Joho, 2002)
  • Nagasaki Prefecture
    • Nagasaki City
      • Mie
Nishiyama, T., Mori, Y., & Shigeno, M. (2017). Jadeitites and associated metasomatic rocks from serpentinite mélanges in the Nishisonogi unit, Nagasaki Metamorphic Complex, western Kyushu, Japan: a review. Journal of Mineralogical and Petrological Sciences, 170322.
  • Yamaguchi Prefecture
    • Ube City
Murakami (1964) Ganseki-Koubutsu-Koshogaku Zasshi, 51, 77-87.
Mongolia
 
  • Ömnögovi Province
    • Noyon District
Goreglyad, A.V., Kovalenko, V.I., Yarmolyuk, V.V. & Abramova, Y.Y. 1980. Comendite and pantellerite in southern Mongolia. Doklady Earth Science Sections, 251, 110-113. Yarmolyuk, V.V. & Kovalenko, V.I. 1980. Basalt-comendite volcanic systems of late Paleozoic age in Mongolia. Doklady Earth Science `Sections, 252, 83-85. Yarmolyuk, V.V., Kovalenko, V.I. & Goreglyad, A.V. 1981. Dike belts in Permian volcanic basalt-comendite-trachyrhyolite fields in Mongolia. Doklady Earth Science Sections, 258, 67-69.
Myanmar (TL)
 
  • Kachin State
    • Mohnyin District
      • Hpakant Township (Hpakan; Phakant; Phakan)
Shi, G. H., Zhu, X. K., Deng, J., Mao, Q., Liu, Y. X., & Li, G. W. (2011). Geochimica et Cosmochimica Acta, 75(6), 1608-1620 Guanghai Shi, George E. Harlow, Jing Wang, Jun Wang, Enoch Ng, Xia Wang, ShuMin Cao and Wenyuan CUI(2012): Mineralogy of jadeitite and related rocks from Myanmar: a review with new data. European Journal of mineralogy, Vol 24, pp 345-380; Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Harlow, G.E. (2014) Katophorite, IMA 2013-140. CNMNC Newsletter No. 20, June 2014, page 554; Mineralogical Magazine, 78, 549-558; Oberti, R., Boiocchi, M., Hawthorne, F. C., Ball, N. A., & Harlow, G. E. (2015). Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare (grandfathered) endmember of the amphibole supergroup. Mineralogical Magazine, 79(2), 355-363.
Nyunt, T. T. (2009). Petrological and geochemical contribution to the origin of jadeitite and associated rocks of the Tawmaw Area, Kachin State, Myanmar.
Namibia
 
  • Khomas Region
    • Windhoek Rural
      • Aris
[http://www.koeln.netsurf.de/~w.steffens/aris.htm]
New Zealand
 
  • Otago Region
    • Dunedin City
      • Otago Peninsula
Allen, J.M. (1974) Port Chalmers Breccia and adjacent early flows of the Dunedin volcanic complex at Port Chalmers. New Zealand Journal of Geology and Geophysics,17:1, 209-223.
North Korea
 
  • Kangwon Province
    • Pyonggang County
Pavel M. Kartashov data
Norway
 
  • Buskerud
    • Kongsberg
Bonin, B. & Sørensen, H. (2003): The granites of the Mykle region in the southern part of the Oslo igneous province, Norway. Norges Geologiske Undersøkelse Bulletin, 441: 17-24
  • Vestfold
    • Færder
      • Færder Islands
Andersen, F. (2017): Pegmatittganger og mineraler på Hoftøya og Langøya ved Færder i Ytre Vestfold. Norsk Mineralsymposium 2017: 69-75
Andersen, F. (2017): Pegmatittganger og mineraler på Hoftøya og Langøya ved Færder i Ytre Vestfold. Norsk Mineralsymposium 2017: 69-75
    • Sandefjord
      • Østerøya
        • Yxney
Piilonen, P.C., McDonald, A.M., Poirier, G., Rowe, R. & Larsen, A.O. (2013): Mafic minerals of the alkaline pegmatites in the Larvik plutonic complex, Oslo rift, southern Norway. Canadian Mineralogist. 51, 735-770
Larsen, A. O. (ed.) (2010): The Langesundsfjord. History, geology, pegmatites, minerals. Bode Verlag Gmbh, Salzhemmendorf, Germany, 240 p.
Larsen, A.O.(1995):Identiteten til de sorte amfibolene fra Oslo-feltets syenittpegmatitter. Norsk Bergverksmuseum Skrift 9, 27-34 (in norwegian)
Larsen, A.O.(1995):Identiteten til de sorte amfibolene fra Oslo-feltets syenittpegmatitter. Norsk Bergverksmuseum Skrift 9, 27-34; Berge, S. A. (2013):Mineralene i Husebyyåsen feltspatbrudd, Vesterøya, Sandefjord. Norsk Bergverksmuseum Skrifter. 50, 93-99
Larsen, A.O.(1995):Identiteten til de sorte amfibolene fra Oslo-feltets syenittpegmatitter. Norsk Bergverksmuseum Skrift 9, 27-34 (in norwegian)
Piilonen, P.C., MCDonald, A.M., Poirier, G., Rowe, R., & Larsen, A.O. (2013) Mafic minerals of the alkaline pegmatites in the Larvik Plutonic Complex, Oslo rift, Southern Norway. Canadian Mineralogist 51, 735–770.; Oberti, R., Boiocchi,M.,Hawthorne, F. C., Cámara, F., Ciriotti, M. C. and Berge, S. A. (2015): Ti-Rich fluoro-richterite from Kariåsen (Norway): the oxo-component and the use of Ti4+ as a proxy. Canadian Mineralogist. 53:285-294
        • Nedre Holtan
Piilonen, P.C., McDonald, A.M., Poirier, G., Rowe, R. & Larsen, A.O. (2014): Mafic minerals of the alkaline pegmatites in the Larvik plutonic complex, Oslo rift, southern Norway. Canadian Mineralogist. 51, 735-770
Åsheim, A., Berge, S.A. & Larsen, A.O. (2008): Sporelementer i ænigmatitt fra Larvik plutonkompleks. Norsk Bergverksmuseum Skrift. 38: 63-65
Larsen, A.O.(1995):Identiteten til de sorte amfibolene fra Oslo-feltets syenittpegmatitter. Norsk Bergverksmuseum Skrift 9, 27-34 (in norwegian)
Pakistan
 
  • Khyber Pakhtunkhwa Province
    • Mansehra District
      • Kaghan valley
        • Naran
Eur. J. Mineral. , 1991, 3, pp. 613-618.
Paraguay
 
  • Alto Paraguay Department
Comin-Chiaramonti, P., Renzulli, A., Ridolfi, F., Enrich, G. E., Gomes, C. B., De Min, A., ... & Ruberti, E. (2016). Late-stage magmatic to deuteric/metasomatic accessory minerals from the Cerro Boggiani agpaitic complex (Alto Paraguay Alkaline Province). Journal of South American Earth Sciences, 71, 248-261.
Portugal
 
  • Azores
    • Terceira
      • Angra do Heroísmo
http://www.minersoc.org/files/Applied_Mineralogist_AMG_bulletin_Volume1_Number3.pdf
Russia
 
  • Murmansk Oblast
    • Khibiny Massif
Konopleva, N.G., Ivanyuk, G.Y., Pakhomovsky, Y.A., Yakovenchuk, V.N., Men’shikov, Y.P., and Korchak, Y.A. (2008): Geology of Ore Deposits 50(8), 720-731.
Konopleva, N.G., Ivanyuk, G.Y., Pakhomovsky, Y.A., Yakovenchuk, V.N., Men’shikov, Y.P., and Korchak, Y.A. (2008): Geology of Ore Deposits 50(8), 720-731.
    • Kovdor Massif
Pavel M. Kartashov data
Bea, F., Arzamastsev, A., Montero, P., & Arzamastseva, L. (2001). Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials. Contributions to Mineralogy and Petrology, 140(5), 554-566.
  • Republic of Karelia
    • Louhi District
https://www.researchgate.net/figure/Alkaline-complexes-and-carbonatites-in-Kola-peninsula-northern-Russian-Karelia-and_fig1_225412232
Saudi Arabia
 
  • Ha'il Region
Stuckless, J. S., Hedge, C. E., Wenner, D. B., & Nkomo, I. T. (1985). Isotopic studies of postorogenic granites from the northeastern Arabian Shield, Kingdom of Saudi Arabia. United States Geological Survey, Open File Report 85-126. Quick, J. E. (1983). Reconnaissance geology of the Ghazzalah quadrangle, sheet 26/41 A, Kingdom of Saudi Arabia. US Geological Survey, Open-File Report 83-331.
Kellogg, K. S. (1984). Reconnaissance Geology of the Rak Quadrangle, 27/42 C, Kingdom of Saudi Arabia. United States Geological Survey, Open-File Report 84-374.
du Bray, E.A. & Stoeser, D.B. 1985. Reconnaisance Geology of the Al Hufayr Quadrangle, Sheet 27/41A, Kingdom of Saudi Arabia. United States Geological Survey, Open-File Report 85-14. Irvine, T. N. J., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5), 523-548.
  • Mecca Region
McGUIRE, A. V. (1988). Petrology of mantle xenoliths from Harrat al Kishb: the mantle beneath western Saudi Arabia. Journal of petrology, 29(1), 73-92. Camp, V. E., Roobol, M. J., & Hooper, P. R. (1992). The Arabian continental alkali basalt province: Part III. Evolution of Harrat Kishb, Kingdom of Saudi Arabia. Geological Society of America Bulletin, 104(4), 379-396. Roobol, M. J., & Camp, V. E. (1991). Geologic map of the Cenozoic lava field of Harrat Kishb. Kingdom of Saudi Arabia. 1:250000, Geoscience Map GM-132 (with explanatory text). Ministry of Petroleum and Mineral Resources, Directorate General of Mineral Resource of the Kingdom of Saudi Arabia, Jeddah.
Camp, V. E., & Roobol, M. J. (1989). The Arabian continental alkali basalt province: Part I. Evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geological Society of America Bulletin, 101(1), 71-95. Camp, V. E., & Roobol, M. J. (1991). Geological Map of Cenozoic Lava Field of Harrat Rahat. Saudi Arabian Deputy Ministry for mineral Resources, Kingdom of Saudi Arabia. Geosciences Map GM-123, scale, 1(250,000). Moufti, M. R., Moghazi, A. M., & Ali, K. A. (2013). 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: implications for duration and migration of volcanic activity. Journal of Asian Earth Sciences, 62, 253-268.
  • Medina Region
    • Ithnayn and Kura Lava Fields
Baker, P. E., Brosset, R., Gass, I. G., & Neary, C. R. (1973). Jebel al Abyad: a recent alkalic volcanic complex in western Saudi Arabia. Lithos, 6(3), 291-314. Roobol, M. J., & Camp, V. E. (1991). Geological map of the Cenozoic lava fields of Harrats Khayba. Ithnayen and Kurs, Kingdom of Saudi Arabia. 1:250000 Geoscience Map GM-131 (and Explanatory Notes), Ministry of Petroleum and Mineral Resources, Directorate General of Mineral Resources of the Kingdom of Saudi Arabia, Jeddah.
Slovakia
 
  • Banská Bystrica Region
    • Lučenec District
Huraiová, M., Konečný, P., Holický, I., Nemec, O., Milovská, S., Hurai, V. (2017): Late-magmatic neptunite in composite peralkaline granite syenite nodules within a Pleistocene basalt (Bulhary, Slovakia). Periodico di Mineralogia, 86, 1-17
Sweden
 
  • Jämtland County
    • Strömsund
Majka, J., Janák, M., Andersson, B., Klonowska, I., Gee, D.G., Rosén, Å., & Kośminska, K. (2014): Pressure-temperature estimates on the Tjeliken eclogite: new insights into the (ultra)-high pressure evolution of the Seve Nappe Complex in the Scandinavian Caledonides; in: F. Corfu, D. Gasser & D.M. Chew (Eds.) New Perspectives on the Caledonides of Scandinavia and Related Areas (pp. 369–384). Geological Society, London, Special Publications: 390. DOI: 10.1144/SP390.14
Switzerland
 
  • Valais
    • Martigny
      • Mont Chemin mining district
USA
 
  • Vermont
    • Orleans & Lamoille Cos.
      • Lowell & Eden
Levitan, Denise et al. (2009): Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont. American Mineralogist 94(7):1063-1066.
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.9.21 20:33:53 Page generated: 2020.9.8 10:42:02
Go to top of page