SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Tetraferriphlogopite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About TetraferriphlogopiteHide

Classification of TetraferriphlogopiteHide

Approved, 'Grandfathered' (first described prior to 1959)
Approval Year:
2008
9.EC.20

9 : SILICATES (Germanates)
E : Phyllosilicates
C : Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets

Chemical Properties of TetraferriphlogopiteHide

Formula:
KMg3(Fe3+Si3O10)(OH,F)2
IMA Formula:
KMg3(Si3Fe3+)O10(OH)2

Type Occurrence of TetraferriphlogopiteHide

Other Language Names for TetraferriphlogopiteHide

Relationship of Tetraferriphlogopite to other SpeciesHide

Other Members of this group:
AnniteKFe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
EastoniteKMg2Al(Al2Si2O10)(OH)2Mon.
FluoranniteKFe2+3(Si3Al)O10F2Mon.
FluorophlogopiteKMg3(AlSi3O10)(F,OH)2Mon. 2/m : B2/m
FluorotetraferriphlogopiteKMg3(Fe3+Si3O10)F2Mon. 2/m : B2/m
OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2Mon. 2/m : B2/m
PhlogopiteKMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
SiderophylliteKFe2+2Al(Al2Si2O10)(OH)2Mon.
TetraferrianniteKFe2+3(Si3Fe3+)O10(OH)2Mon.

Common AssociatesHide

Associated Minerals Based on Photo Data:
3 photos of Tetraferriphlogopite associated with Pyroaurite-2HMg6Fe3+2(OH)16(CO3) · 4H2O
3 photos of Tetraferriphlogopite associated with Pyrochlore GroupA2Nb2(O,OH)6Z
3 photos of Tetraferriphlogopite associated with AlbiteNa(AlSi3O8)
2 photos of Tetraferriphlogopite associated with CalciteCaCO3
2 photos of Tetraferriphlogopite associated with ChalcopyriteCuFeS2
2 photos of Tetraferriphlogopite associated with FluorapatiteCa5(PO4)3F
2 photos of Tetraferriphlogopite associated with Armalcolite(Mg,Fe2+)Ti2O5
2 photos of Tetraferriphlogopite associated with SanidineK(AlSi3O8)
1 photo of Tetraferriphlogopite associated with Fluorcalciopyrochlore(Ca,Na)2(Nb, Ti)2O6F

Related Minerals - Nickel-Strunz GroupingHide

9.EC.BalestraiteKLi2V5+Si4O12Mon. 2 : B2
9.EC.05MinnesotaiteFe2+3Si4O10(OH)2Tric. 1 : P1
9.EC.05TalcMg3Si4O10(OH)2Tric. 1 : P1
9.EC.05WillemseiteNi3Si4O10(OH)2Mon.
9.EC.9.EC.VoloshiniteRb(LiAl1.51.5)(Al0.5Si3.5)O10F2Mon. 2/m : B2/b
9.EC.10FerripyrophylliteFe3+Si2O5(OH)Mon.
9.EC.10PyrophylliteAl2Si4O10(OH)2Tric. 1
9.EC.15BoromuscoviteKAl2(BSi3O10)(OH)2Mon.
9.EC.15CeladoniteK(Mg,Fe2+)Fe3+(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15Chernykhite(Ba,Na)(V3+,Al,Mg)2((Si,Al)4O10)(OH)2Mon.
9.EC.15Montdorite(K,Na)2(Fe2+,Mn2+,Mg)5(Si4O10)2(OH,F)4Mon. 2/m : B2/m
9.EC.15MuscoviteKAl2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15NanpingiteCsAl2(AlSi3O10)(OH,F)2Mon.
9.EC.15ParagoniteNaAl2(AlSi3O10)(OH)2Mon.
9.EC.15RoscoeliteK(V3+,Al)2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15Tobelite(NH4,K)Al2(AlSi3O10)(OH)2Mon.
9.EC.15AluminoceladoniteK(Mg,Fe2+)Al(Si4O10)(OH)2Mon.
9.EC.15ChromphylliteK(Cr,Al)2(AlSi3O10)(OH,F)2Mon. 2/m : B2/b
9.EC.15FerroaluminoceladoniteK(Fe2+,Mg)(Al,Fe3+)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15ChromceladoniteK(Mg,Fe2+)(Cr,Al)(Si4O10)(OH)2Mon.
9.EC.15TainioliteKLiMg2(Si4O10)F2Mon.
9.EC.15Ganterite(Ba,Na,K)(Al,Mg)2(AlSi3O10)(OH)2Mon.
9.EC.20AnniteKFe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20EphesiteNaLiAl2(Al2Si2O10)(OH)2Tric.
9.EC.20HendricksiteKZn3(Si3Al)O10(OH)2Mon. 2/m : B2/m
9.EC.20Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2Mon.
9.EC.20NorrishiteKLiMn3+2(Si4O10)O2Mon. 2/m : B2/m
9.EC.20PhlogopiteKMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20PolylithioniteKLi2Al(Si4O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20PreiswerkiteNaMg2Al(Al2Si2O10)(OH)2Mon.
9.EC.20SiderophylliteKFe2+2Al(Al2Si2O10)(OH)2Mon.
9.EC.20FluorotetraferriphlogopiteKMg3(Fe3+Si3O10)F2Mon. 2/m : B2/m
9.EC.20Wonesite(Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4Mon. 2/m : B2/m
9.EC.20EastoniteKMg2Al(Al2Si2O10)(OH)2Mon.
9.EC.20TetraferrianniteKFe2+3(Si3Fe3+)O10(OH)2Mon.
9.EC.20TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20FluoranniteKFe2+3(Si3Al)O10F2Mon.
9.EC.20ShirokshiniteKNaMg2(Si4O10)F2Mon. 2/m : B2/m
9.EC.20ShirozuliteKMn2+3(Si3Al)O10(OH)2Mon. 2/m : B2/m
9.EC.20SokolovaiteCsLi2Al(Si4O10)F2Mon.
9.EC.20AspidoliteNaMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20FluorophlogopiteKMg3(AlSi3O10)(F,OH)2Mon. 2/m : B2/m
9.EC.20UM2004-49-SiO:AlCsFHKLi(Cs,K)(Al,Li)2.6((Si,Al)4O10)(F,OH)2
9.EC.20Suhailite(NH4)Fe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20YangzhumingiteKMg2.5(Si4O10)F2Mon. 2/m : B2/m
9.EC.20OrloviteKLi2Ti(Si4O10)OFMon. 2 : B2
9.EC.20OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2Mon. 2/m : B2/m
9.EC.30MargariteCaAl2(Al2Si2O10)(OH)2Mon.
9.EC.35Anandite(Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2Mon. 2/m : B2/b
9.EC.35BityiteLiCaAl2(AlBeSi2O10)(OH)2Mon. 2/m : B2/b
9.EC.35ClintoniteCa(Mg,Al)3(Al3SiO10)(OH)2Mon. 2/m : B2/m
9.EC.35Kinoshitalite(Ba,K)(Mg,Mn2+,Al)3(Al2Si2O10)(OH)2Mon.
9.EC.35Ferrokinoshitalite(Ba,K)(Fe2+,Mg)3(Al2Si2O10)(OH,F)2Mon.
9.EC.35Oxykinoshitalite(Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2Mon. 2/m : B2/m
9.EC.35FluorokinoshitaliteBaMg3(Al2Si2O10)F2Mon. 2/m : B2/m
9.EC.40Beidellite(Na,Ca0.5)0.3Al2((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.40Kurumsakite(Zn,Ni,Cu)8Al8V5+2Si5O35 · 27H2O (?)Orth.
9.EC.40Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2OMon. 2/m : B2/m
9.EC.40NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.40VolkonskoiteCa0.3(Cr,Mg,Fe)2((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.40Yakhontovite(Ca,Na)0.5(Cu,Fe,Mg)2(Si4O10)(OH)2 · 3H2OMon.
9.EC.45HectoriteNa0.3(Mg,Li)3(Si4O10)(F,OH)2Mon.
9.EC.45SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.45SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.45SpadaiteMgSiO2(OH)2 · H2O (?)
9.EC.45Stevensite(Ca,Na)xMg3-x(Si4O10)(OH)2Mon.
9.EC.45SwineforditeLi(Al,Li,Mg)4((Si,Al)4O10)2(OH,F)4 · nH2OMon.
9.EC.45ZincsiliteZn3Si4O10(OH)2 · 4H2O (?)Mon.
9.EC.45FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.50VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2OMon. 2/m
9.EC.55Baileychlore(Zn,Fe2+,Al,Mg)6(Si,Al)4O10(OH)8Tric. 1
9.EC.55Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8Mon.
9.EC.55ClinochloreMg5Al(AlSi3O10)(OH)8Mon. 2/m : B2/m
9.EC.55Cookeite(Al2Li)Al2(AlSi3O10)(OH)8Mon. 2/m
9.EC.55FranklinfurnaceiteCa2Fe3+Mn2+3Mn3+(Zn2Si2O10)(OH)8Mon. 2 : B2
9.EC.55Gonyerite(Mn2+,Mg)5Fe3+(Fe3+Si3O10)(OH)8Orth.
9.EC.55Nimite(Ni,Mg,Al)6((Si,Al)4O10)(OH)8Mon.
9.EC.55Orthochamosite(Fe2+,Mg,Fe3+)5Al(AlSi3O10)(OH,O)8
9.EC.55PennantiteMn2+5Al(AlSi3O10)(OH)8Tric.
9.EC.55SudoiteMg2Al3(Si3Al)O10)(OH)8Mon.
9.EC.55DonbassiteAl4.33(AlSi3O10)(OH)8Mon. 2 : B2
9.EC.55GlagoleviteNa(Mg,Al)6(AlSi3O10)(OH,O)8Tric. 1 : P1
9.EC.55BorocookeiteLi1+3xAl4-x(BSi3O10)(OH)8
9.EC.60AliettiteCa0.2Mg6((Si,Al)8O20)(OH)4 · 4H2OMon.
9.EC.60Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2OOrth.
9.EC.60DozyiteMg7Al2(Al2Si4O15)(OH)12Mon.
9.EC.60HydrobiotiteK(Mg,Fe2+)6((Si,Al)8O20)(OH)4 · nH2OMon.
9.EC.60Karpinskite(Ni,Mg)2Si2O5(OH)2 (?)Mon.
9.EC.60KulkeiteMg8Al(AlSi7O20)(OH)10Mon.
9.EC.60LunijianlaiteLi0.7Al6.2(AlSi7O20)(OH,O)10Mon.
9.EC.60Rectorite(Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2OMon.
9.EC.60Saliotite(Li,Na)Al3(AlSi3O10)(OH)5Mon.
9.EC.60TosuditeNa0.5(Al,Mg)6((Si,Al)8O18)(OH)12 · 5H2OMon. 2 : B2
9.EC.60BrinrobertsiteNa0.3Al4(Si4O10)2(OH)4 · 3.5 H2OMon.
9.EC.65Macaulayite(Fe,Al)24Si4O43(OH)2Mon.
9.EC.70BurckhardtitePb2(Fe3+Te6+)[AlSi3O8]O6Trig. 3m (3 2/m) : P3 1m
9.EC.75Ferrisurite(Pb,Ca)2.4Fe3+2(Si4O10)(CO3)1.7(OH)3 · nH2OMon.
9.EC.75Surite(Pb,Ca)3(Al,Fe2+,Mg)2((Si,Al)4O10)(CO3)2(OH)2Mon.
9.EC.75Niksergievite(Ba,Ca)2Al3(AlSi3O10)(CO3)(OH)6 · nH2OMon.
9.EC.80KegelitePb8Al4(Si8O20)(SO4)2(CO3)4(OH)8Mon.

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for TetraferriphlogopiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Wahl W (1925) Die Gesteine des Wiborger Rapakiwigebietes. Fennia 45, 83-88
Brigatti M F, Medici L, Poppi L (1996) Refinement of the structure of natural ferriphlogopite. Clays and Clay Minerals 44, 540-545
Rieder M, Cavazzini G, D’Yakonov Y S, Frank-Kamenetskii V A, Gottardt G, Guggenheim S, Koval P V, Muller G, Neiva A M R, Radoslovich E W, Robert J L, Sassi F P, Takeda H, Weiss Z, Wones D R (1998) Nomenclature of the micas. The Canadian Mineralogist 36, 905-912
Semenova T F, Rozhdestvenskaya I V, Frank-Kamenetskii V A (1977) Refinement of the crystal structure of tetraferriphlogopite. Soviet Physics - Crystallography 22, 680-683
Mineralogical Record 39 (2008), 131

Internet Links for TetraferriphlogopiteHide

Localities for TetraferriphlogopiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Afghanistan
 
  • Helmand
    • Dushan District
      • Khanneshin complex
Vikhter, B. Y., Yeremenko, G. K., & Chmyrev, V. M. (1976). A young volcanogenic carbonatite complex in Afghanistan. International Geology Review, 18(11), 1305-1312. Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7(1), 276-289.
Angola
 
  • Huambo Province
    • Londuimbali
Amores-Casals, S.; Gonçalves, A.O.; Melgarejo, J.-C.; Molist, J.M. (2020) Nb and REE Distribution in the Monte Verde Carbonatite–Alkaline–Agpaitic Complex (Angola). Minerals 10, 5.
  • Huíla Province
    • Quilengues
Amores-Casals, S., Melgarejo, J. C., Bambi, A., Gonçalves, A. O., Morais, E. A., Manuel, J., ... & Molist, J. M. (2019). Lamprophyre-Carbonatite Magma Mingling and Subsolidus Processes as Key Controls on Critical Element Concentration in Carbonatites—The Bonga Complex (Angola). Minerals, 9(10), 601.
Antarctica
 
  • Eastern Antarctica
    • Queen Maud Land
Luttinen, A. V., Zhang, X., & Foland, K. A. (2002). 159 Ma Kjakebeinet lamproites (Dronning Maud Land, Antarctica) and their implications for Gondwana breakup processes. Geological Magazine, 139(5), 525-539.
Australia
 
  • Northern Territory
    • Central Desert Region
      • Alcoota Station
Black, L. P., LP, B., & BL, G. (1978). The age of the mud tank carbonatite, strangways range, northern territory. BMR Journal of Australian Geology and Geophysics, 3, 227-232. Currie, K. L., Knutson, J., & Temby, P. A. (1992). The Mud Tank carbonatite complex, central Australia—an example of metasomatism at mid-crustal levels. Contributions to Mineralogy and Petrology, 109(3), 326-339. Nelson, D. R., Chivas, A. R., Chappell, B. W., & McCulloch, M. T. (1988). Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1), 1-17. Wilson, A. F. (1979). Contrast in the isotopic composition of oxygen and carbon between the Mud Tank Carbonatite and the marbles in the granulite terrane of the Strangways Range, central Australia. Journal of the Geological Society of Australia, 26(1-2), 39-44.
  • Western Australia
    • Ashburton Shire
      • Barradale
Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, p.243.
    • Laverton Shire
      • Mount Weld Station
Dunkan, R.K. & Willett, G.C. 1990. Mount Weld carbonatite. Hughes, F. E. (Ed.). (1990). Geology of the mineral deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy. Melbourne, 591-597. Middlemost, E. (1990). Mineralogy and petrology of the rauhaugites of the Mt Weld carbonatite complex of Western Australia. Mineralogy and Petrology, 41(2-4), 145-161. Nelson, D. R., Chivas, A. R., Chappell, B. W., & McCulloch, M. T. (1988). Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1), 1-17.
    • Wiluna Shire
      • Carnegie Station
Hamilton, R., & Rock, N. M. (1990). Geochemistry, mineralogy and petrology of a new find of ultramafic lamprophyres from Bulljah Pool, Nabberu Basin, Yilgarn Craton, Western Australia. Lithos, 24(4), 275-290.
    • Wyndham-East Kimberley Shire
      • Bow River Station
Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, p.244 Jaques et al.(1986): The Kimberlites and Lamproites of Western Australia, Geological Survey of Western Australia (1986)
      • Lake Argyle area
Atkinson, W. J., Hughes, F. E., & Smith, C. B. (1984). A review of the kimberlitic rocks of Western Australia. In Developments in Petrology (Vol. 11, pp. 195-224). Elsevier. Grice, J. D., & Boxer, G. L. (1990). Diamonds from Kimberley, Western Australia. The Mineralogical Record, 21, 559-564. Jaques, A. L., Lewis, J. D., & Smith, C. B. (1986). The Kimberlites and Lamproites of Western Australia: Geol. Surv. West. Aust. Bull, 132. Jaques, A. L., O'Neill, H. S. C., Smith, C. B., Moon, J., & Chappell, B. W. (1990). Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe, Western Australia. Contributions to Mineralogy and Petrology, 104(3), 255-276. Luguet, A., Jaques, A. L., Pearson, D. G., Smith, C. B., Bulanova, G. P., Roffey, S. L., ... & Lorand, J. P. (2009). An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos, 112, 1096-1108. Pidgeon, R. T., Smith, C. B., & Fanning, C. M. (1989). Kimberlite and lamproite emplacement ages in Western Australia. Kimberlites and related rocks, 1, 382-391.
Belarus
 
  • Minsk Region
Aizberg, R. Y., Beskopylny, V. N., Starchik, T. A., & Tsekoyeva, T. K. (2001). Late Devonian magmatism in the Pripyat Palaeorift: a geodynamic model. Geological Quarterly, 45(4), 349-358. Mikhailov, N.D. & Laptsevich, A.G. 2009. Lamprophyric rocks of the Devonian alkali igneous complex of Belarus. Geochemistry of Magmatic Rocks, 26, International Conference. Russian Academy of Sciences, Vernadsky Institute of Geochemistry, Moscow, 104-106. Mikhailov, N.D., Laptsevich, A.G. & Vladykin, N.V. 2010. Alkali lamprophyres of the Paleozoic igneous complex of Belarus. Vladykin, N.V. (ed) Deep-Seated Magmatism, its Sources and Plumes. Russian Academy of Sciences, Vinogradov Institute of Geochemistry, Siberian Branch, Irkutsk, 185-197. Veretennikov, N.V. & Laptsevich, A.G. 2007. First carbonatite finding in the platform cover of Belarus. Doklady of the National Academy of Science of Belarus, 51, 84-88. Wilson, M. & Lyashkevich, Z.M. 1996. Magmatism and the geodynamics of rifting of the Pripyat-Dnieper-Donets rift. East European Platform. Tectonophysics, 268, 65-81.
Brazil
 
  • Minas Gerais
    • Araxá
Traversa, G., Gomes, C. B., Brotzu, P., Buraglini, N., Morbidelli, L., Principato, M. S., ... & Ruberti, E. (2001). Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). Anais da Academia Brasileira de Ciências, 73(1), 71-98.
  • Santa Catarina
    • Anitápolis
Comin-Chiaramonti, P., de Barros Gomes, C., Castorina, F., di Censi, P., Antonini, P., Furtado, S., ... & Scheibe, L. F. (2008). Geochemistry and geodynamic implications of the Anitápolis and Lages alkaline-carbonatite complexes, Santa Catarina State, Brazil. Brazilian Journal of Geology, 32(1), 43-58.
Comin-Chiaramonti, P., de Barros Gomes, C., Castorina, F., di Censi, P., Antonini, P., Furtado, S., ... & Scheibe, L. F. (2008). Geochemistry and geodynamic implications of the Anitápolis and Lages alkaline-carbonatite complexes, Santa Catarina State, Brazil. Brazilian Journal of Geology, 32(1), 43-58.
Canada
 
  • Northwest Territories
Chakhmouradian, A. R., Reguir, E. P., & Mitchell, R. H. (2002). Strontium-apatite: New occurrences, and the extent of Sr-for-Ca substitution in apatite-group minerals. The Canadian Mineralogist, 40(1), 121-136.
      • Ekati Mine
Kamenetsky, V. S., Grütter, H., Kamenetsky, M. B., & Gömann, K. (2013). Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chemical Geology, 353, 96-111.
  • Nunavut
    • Qikiqtaaluk Region
      • Ungava bay
        • Abloviak fjord
Digonnet, S., Goulet, N., Bourne, J., Stevenson, R., and Archibald, D. (2000) Petrology of the Abloviak ailikite dikes, New Québec: evidence for a Cambrian diamondiferous alkaline province in northeastern North America. Canadian Journal of Earth Science: 37: 517-533.; Tappe, S., Jenner, G. A., Foley, S. F., Heaman, L., Besserer, D., Kjarsgaard, B. A., & Ryan, B. (2004). Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos, 76(1), 491-518.
China
 
  • Qinghai
    • Gyêgu Autonomous Prefecture (Yushu Autonomous Prefecture)
      • Zadoi Co. (Zaduo Co.)
Jinhua Hao, Jianping Chen, Yongge Tian, Yulong Li, and Jingwu Yin (2010): Geology and Exploration 46(3), 367-376
Czech Republic
 
  • Hradec Králové Region
    • Trutnov District
Ulrych, J., Povondra, P., Pivec, E., Rutšek, J., Bendl, J., & Bilik, I. (1996). Alkaline ultramafic sill at Dvůr Králové nad Labem, eastern Bohemia: petrological and geochemical constraints. Acta Univ. Carol., Geol, 40, 53-79.
Finland
 
  • Lapland
    • Ranua
Mutanen, T. 2011. Alkalikiviä ja appiniitteja. Raportti hankkeen " Magmatismi ja malminmuodostus II" toiminnasta 2002-2005.
    • Savukoski
      • Tulppio
H. Vartiainen, A.R. Woolley (1974) The age of the Sokli carbonatite, Finland and some relationships of the North Atlantic Igneous Province. Bull. Geol. Soc. Finl. vol 46, 81- 91, Kononova, V. A., Shanin, L. L., & Arakelyants, M. M. (1974). Times of formation of alkaline massifs and carbonatites. International Geology Review, 16(10), 1119-1130. H. Vartiainen, A.R. Woolley (1976) The petrology, mineralogy and chemistry of the fenites of the Sokli carbonatite intrusion, Finland. Geol. Surv. of Finland, Bull. 280 Mäkelä, M., & Vartiainen, H. (1978). A study of sulfur isotopes in the Sokli multi-stage carbonatite (Finland). Chemical Geology, 21(3-4), 257-265. Vartiainen, H., Kresten, P., & Kafkas, Y. (1978). Alkaline lamprophyres from the Sokli complex, northern Finland. Bull. Geol. Soc. Finland, 50(1-2), 59-68. Vartiainen, H. E. I. K. K. I., & Paarma, H. E. I. K. K. I. (1979). Geological characteristics of the Sokli carbonatite complex, Finland. Economic Geology, 74(5), 1296-1306. Vartiainen, H. (1980). The petrography, mineralogy and petrochemistry of the Sokli carbonatite massif, northern Finland. Bulletin of Geological Survey of Finland. Heinänen, K., & VARTIAINEN, H. (1981). Magnetite in Sokli carbonatite Massif and in Tulppio olivinite. Bull. Geol. Soc. Finland, 53, 83-90. Lapin, A. V., & Vartiainen, H. (1983). Orbicular and spherulitic carbonatites from Sokli and Vuorijärvi. Lithos, 16(1), 53-60. Vartiainen, H. (1989). The phosphate deposits of the Sokli Carbonatite Complex, Finland. In Phosphate deposits of the world. Phosphate rock resources (pp. 398-402). Kramm, U. (1993). Mantle components of carbonatites from the Kola Alkaline Province, Russia and Finland: a Nd-Sr study. European Journal of Mineralogy, 985-990. Kramm, U., Kogarko, L. N., Kononova, V. A., & Vartiainen, H. (1993). The Kola Alkaline Province of the CIS and Finland: Precise Rb Sr ages define 380–360 Ma age range for all magmatism. Lithos, 30(1), 33-44. Albers, K.-H., Woolley, A.R., Garcia, D. & Sonnet, P. 1998. Development of new technology for utilisation of the unique Nb deposit at Sokli, Finland, for the European super-alloy industry. Ingrid, H. K. (1998). Rare earth elements in sövitic carbonatites and their mineral phases. Journal of Petrology, 39(11-12), 2105-2121. Lee, M. J., Garcia, D., Moutte, J., Wall, F., Williams, C. T., Woolley, A. R., & Stanley, C. J. (1999). Pyrochlore and whole rock chemistry of carbonatites and phoscorites at Sokli, Finland. Pp. 651-653 in: Mineral Deposits: Processes to Processing (CJ Stanley et al., editors), 1. Lee, M. J., Garcia, D., Moutte, J., Williams, C. T., & Wall, F. (2004). Carbonatites and phoscorites from the Sokli Complex, Finland. Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province”, eds. F. Wall and AN Zaitev, The Mineralogical Society of Great Britain and Ireland, London, 133-162. Lee, M. J., Lee, J. I., Garcia, D., Moutte, J., Williams, C. T., Wall, F., & Kim, Y. (2006). Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochemical Journal, 40(1), 1-13. Lee, M. J., Lee, J. I., Garcia, D., Moutte, J., Williams, C. T., Wall, F., & Kim, Y. (2006). Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochemical Journal, 40(1), 1-13. Rukhlov, A. S., & Bell, K. (2010). Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology, 98(1-4), 11-54. O’Brien, H., & Hyvönen, E. (2015). The Sokli carbonatite complex. In Mineral deposits of Finland (pp. 305-325). Elsevier. Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, p.315 Proceedings of the First Annual Workshop (Eurothen '98), Athens, Greece, National Technical University of Athens, Athens, 449-472.
  • North Ostrobothnia
    • Pudasjärvi
Nykanen, J., Laajoki, K., & Karhu, J. (1997). Geology and geochemistry of the early Proterozoic Kortejarvi and Laivajoki carbonatites, central Fennoscandian Shield, Finland. Bulletin of the Geological Society of Finland, 69, 1-2. Kresten, P., Printzlau, I., Rex, D., Vartiainen, H., & Woolley, A. (1977). New ages of carbonatitic and alkaline ultramafic rocks from Sweden and Finland. Geologiska Föreningen i Stockholm Förhandlingar, 99(1), 62-65. O'Brien, H. E., Peltonen, P., & Vartiainen, H. (2005). Kimberlites, carbonatites, and alkaline rocks. In Developments in Precambrian Geology (Vol. 14, pp. 605-644). Elsevier.
  • Northern Savonia
    • Siilinjärvi
Basu, A. R., Goodwin, A. M., & Tatsumoto, M. (1984). SmNd study of Archean alkalic rocks from the Superior Province of the Canadian Shield. Earth and planetary science letters, 70(1), 40-46. Ingrid, H. K. (1998). Rare earth elements in sövitic carbonatites and their mineral phases. Journal of Petrology, 39(11-12), 2105-2121. Kononova, V. A., Shanin, L. L., & Arakelyants, M. M. (1974). Times of formation of alkaline massifs and carbonatites. International Geology Review, 16(10), 1119-1130. O'Brien, H. E., Peltonen, P., & Vartiainen, H. (2005). Kimberlites, carbonatites, and alkaline rocks. In Developments in Precambrian Geology (Vol. 14, pp. 605-644). Elsevier. O’Brien, H., Heilimo, E., & Heino, P. (2015). The Archean Siilinjärvi carbonatite complex. In Mineral deposits of Finland (pp. 327-343). Elsevier. Patchett, P. J., Kouvo, O., Hedge, C. E., & Tatsumoto, M. (1982). Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3), 279-297. Puustinen, K. 1971. Geology of the Siilinjarvi carbonatite complex, eastern Finland. Bulletin e la Comission Geologique de Finlande, 249, 1-43. Puustinen, K. (1972). Richterite and actinolite from the Siilinjarvi carbonatite complex, Finland. Bull Geol Soc Finland, 44, 83-86. Puustinen, K. A. U. K. O. (1973). Tetraferriphlogopite from the Siilinjärvi carbonatite complex, Finland. Bulletin of the Geological Society of Finland, 45, 35-42. Puustinen, K. (1974). DOLOMITE EXSOLUTION TEXTURES IN CALCITE FROM THE SIILINJAERVI CARBONATITE COMPLEX, FINLAND, 46, 151-159. Puustinnen, K. & Kauppinen, H. 1989. The Siilinjarvi carbonatite complex, eastern Finland. Notholt, A. J. G., Sheldon, R. P., & Davidson, D. F. (Eds.). (2005). Phosphate deposits of the world: volume 2, phosphate rock resources (Vol. 2). Cambridge University Press. 394-397. Rukhlov, A. S., & Bell, K. (2010). Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology, 98(1-4), 11-54. Tichomirowa, M., Whitehouse, M. J., Gerdes, A., Götze, J., Schulz, B., & Belyatsky, B. V. (2013). Different zircon recrystallization types in carbonatites caused by magma mixing: Evidence from U–Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chemical Geology, 353, 173-198. Tilton, G. R. (1983). Evolution of depleted mantle: the lead perspective. Geochimica et Cosmochimica Acta, 47(7), 1191-1197.
Puustinen, K. A. U. K. O. (1973). Tetraferriphlogopite from the Siilinjärvi carbonatite complex, Finland. Bull. Geol. Soc. Finland, 45, 35-42.
India
 
  • Andhra Pradesh
    • Anantapur District
      • Wajrakarur kimberlite field
        • Wajrakarur–Lattavaram cluster
Kaur, G., & Mitchell, R. H. (2013). Mineralogy of the P2-West ‘Kimberlite’, Wajrakarur kimberlite field, Andhra Pradesh, India: kimberlite or lamproite?. Mineralogical Magazine, 77(8), 3175-3196.
    • Kurnool District
Bergman, S. C. (1987). Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. Geological Society, London, Special Publications, 30(1), 103-190.
  • Rajasthan
    • Jaipur district
      • Sikar District
Basu, S. K., & Narsayya, B. L. (1982). Note on a zone of probable carbonatite-alkali metasomatic rock associotion in the eastern part of Khetri copper belt, Northeastern Rajasthan. Indian Minerals, 36(1), 29-31. Saxena, M. N., Gupta, L. N., & CHAUDHRI, N. (1984). Carbonatite dikes in Dhanota-Dhancholi hills, Narnaul, Haryana. Current science, 53(12), 651-652.
    • Jodhpur district
      • Sirohi district
Subrahmanyam, N. P., & Rao, G. V. D. (1977). Petrography, geochemistry and origin of the carbonatite veins of Mer pluton, Mundwara igneous complex, Rajasthan. Geological Society of India, 18(7), 306-322. LE-BAS, M. J., & Srivastava, R. K. (1989). The mineralogy and geochemistry of the Mundwara carbonatite dykes, Sirohi District, Rajasthan, India. Neues Jahrbuch für Mineralogie. Abhandlungen, (2), 207-227. Subrahmanyam, N. P., & Leelanandam, C. (1991). Geochemistry and petrology of the cumulophyric layered suite of rocks from the Toa pluton of the Mundwara alkali igneous complex, Rajasthan. Journal of the Geological Society of India, 38(4), 397-411. Narayan Das, G.R., Sharma, C.V. & Navaneetham, K.V. 1982. Carbonate-alkaline Complex of Mundwara. Journal of the Geological Society of India, 23, 604-609.
  • Telangana
    • Nalgonda District
Kaur, G., Mitchell, R. H., & Ahmed, S. (2016). Typomorphic mineralogy of the Vattikod lamproites from Mesoproterozoic Ramadugu Lamproite Field, Nalgonda District, Telangana, India: A plausible manifestation of subduction-related alkaline magmatism in the Eastern Ghats Mobile Belt?.
  • West Bengal
    • Paschim Bardhaman District
Mitchell, R. H. & Fareeduddin (2009). Mineralogy of peralkaline lamproites from the Raniganj Coalfield, India. Mineralogical Magazine, 73, 457-477. Middlemost, E. A., Paul, D. K., & Fletcher, I. R. (1988). Geochemistry and mineralogy of the minette-lamproite association from the Indian Gondwanas. Lithos, 22(1), 31-42.
Norway
 
  • Telemark
    • Nome
Mitchell, R.H. (1980): Pyroxenes of the Fen alkaline complex, Norway. American Mineralogist. 65: 45-54
      • Søve Mines
Mitchell, R.H. (1980): Pyroxenes of the Fen alkaline complex, Norway. American Mineralogist. 65: 45-54
  • Troms og Finnmark
    • Tromsø
      • Kvaløya
Zozulya, D.R., Savchenko, E. E., Kullerud, K.,Ravna, E. K. and L. M. Lyalina (2010) Unique accessory Ti-Ba-P mineralization in the Kvalöya ultrapotassic dike, Northern Norway. Geology of Ore Deposits 52, 843-851; Schingaro, E., Kullerud, K., Lacalamita, M., Mesto, E., Scordari, F., Zozulya, D., Erambert, M., Ravna, E.J.K. (2014): Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin. Lithos, 209, 1-13
Zozulya, D.R., Savchenko, E. E., Kullerud, K.,Ravna, E. K. and L. M. Lyalina (2010) Unique accessory Ti-Ba-P mineralization in the Kvalöya ultrapotassic dike, Northern Norway. Geology of Ore Deposits 52, 843-851; Schingaro, E., Kullerud, K., Lacalamita, M., Mesto, E., Scordari, F., Zozulya, D., Erambert, M., Ravna, E.J.K. (2014): Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin. Lithos, 209, 1-13
Russia
 
  • Chelyabinsk Oblast
    • Vishnevye Mountains
Nedosekova, I.L. (2007): Geology of Ore Deposits 49(2), 129-146.
  • Irkutsk Oblast
    • Vitim Plateau
      • Biraya and Bya Rivers confluence area (Chara Basin)
Koneva A.A., Konev A.A., Vladykin N.V. (2010) Vein complex of the Biraya carbonatite deposit. in Abstracts of XXVII International conference School «Geochemistry of Alkaline rocks». – Moscow-Koktebel’. pp. 240 pp.
  • Khabarovsk Krai
    • Ayan-Maya district
Lennikov, A. M., Zalishak, B. L., & Oktyabrsky, R. A. (2004). The Konder massif of ultramafic and alkaline rocks and related PGM mineralization. In Interim IAGOD Conf. Excursion Guidebook. Vladivostok: Dalnauka (p. 29).
  • Komi Republic
    • Timan Range
Ras, I. K. U., Nedosekova IL, Udoratina OV, Vladykin NV, Pribavkin SV. (2011) Geochemistry and petrochemistry of carbonatites and dyke ultrabasites of Chetlassky complex (Timan, Russia). Abstracts of International conference Ore potential of alkaline, kimberlite and carbonatite magmatism
  • Murmansk Oblast
Zaitsev, A. N., Williams, C. T., Jeffries, T. E., Strekopytov, S., Moutte, J., Ivashchenkova, O. V., ... & Borozdin, A. P. (2014). Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61, 204-225.; Mikhailova, J. A., Kalashnikov, A. O., Sokharev, V. A., Pakhomovsky, Y. A., Konopleva, N. G., Yakovenchuk, V. N., ... & Ivanyuk, G. Y. (2016). 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia). Mineralium Deposita, 51(1), 131-149.
P Haas collection
World of Stones 95: 5-6, 64.; Rimskaya-Korsakova O.M. and Sokolova E.P. (1964) ZVMO, 93(4), p.411 (in Rus.).; Jambor, J.L. and Roberts, A.C. (2001) New mineral names. American Mineralogist: 86: 197-200.
Mikhailova, J. A., Kalashnikov, A. O., Sokharev, V. A., Pakhomovsky, Y. A., Konopleva, N. G., Yakovenchuk, V. N., ... & Ivanyuk, G. Y. (2016). 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia). Mineralium Deposita, 51(1), 131-149.
www.koeln.netsurf.de/~w.steffens/lovo.htm
    • Northern Karelia
www.koeln.netsurf.de/~w.steffens/vuori.htm; Sokolov, S. V. (2014). Portlandite in rocks of carbonatite massifs. Geochemistry International, 52(8), 698-701.
    • Turii Cape
www.koeln.netsurf.de/~w.steffens/tury.htm; Liferovich, R. P., Mitchell, R. H., Zozulya, D. R., & Shpachenko, A. K. (2006). Paragenesis and composition of banalsite, stronalsite, and their solid solution in nepheline syenite and ultramafic alkaline rocks. The Canadian Mineralogist, 44(4), 929-942.
  • Republic of Karelia
    • Äänisenranta District
      • Zaonezhskoe kimberlite field
Putintseva, E. V., & Spiridonov, E. M. (2017). Allanite-(Ce): a Typical Mineral of Metakimberlite from the Lake Kimozero Area, Karelia. Geology of Ore Deposits, 59(8), 720-728.
  • Sakha Republic (Yakutia)
    • Mirninsky District
      • Daldyn
Sharygin I.S., Golovin A.V. (2001) Origin of djerfisherite in mantle xenoliths and its relation to kimberlite magmatism. Abstracts of XXVII International conference School «Geochemistry of Alkaline rocks». – Moscow-Koktebel’. pp. 240 pp. ; Sharygin, I. S., Golovin, A. V., Korsakov, A. V., & Pokhilenko, N. P. (2013). Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia)–a new locality and host rock type. European Journal of Mineralogy, 25(5), 825-834.; Sharygin, V. V., Kamenetsky, V. S., & Kamenetsky, M. B. (2008). Potassium sulfides in kimberlite-hosted chloride–“nyerereite” and chloride clasts of Udachnaya-East pipe, Yakutia, Russia. The Canadian Mineralogist, 46(4), 1079-1095.; Rezvukhin, D.I.; Alifirova, T.A.; Golovin, A.V.; Korsakov, A.V. (2020) A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals 10, 264.
  • Tuva
Sharygin, V. V. (2016) Secondary olivine-hosted inclusions in calcite-dolomite carbonatite of the Belaya Zima alkaline massif, Eastern Sayan, Russia: Evidence for Na-rich carbonatite composition. Asian Current Research On Fluid Inclusions (ACROFI-VI), Indian Institute of Technology Bombay; Doroshkevich, A. G., Veksler, I. V., Izbrodin, I. A., Ripp, G. S., Khromova, E. A., Posokhov, V. F., ... & Vladykin, N. V. (2016). Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: Implications for the sources of the parental magma and metasomatizing fluids. Journal of Asian Earth Sciences, 116, 81-96.
South Africa
 
  • Free State
    • Thabo Mofutsanyane District
      • Clocolan
Kamenetsky, V. S., Belousova, E. A., Giuliani, A., Kamenetsky, M. B., Goemann, K., & Griffin, W. L. (2014). Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts. Chemical Geology, 383, 76-85.
  • Northern Cape
    • ZF Mgcawu
      • Kgatelopele
        • Lime Acres
Henrietta Farr, Andrea Giuliani, David Phillips (2018) Melt evolution of the Finsch orangeite, South Africa. in abstracts of the 22nd IMA Meeting Melbourne p 423
Sweden
 
  • Värmland County
    • Filipstad
      • Långban Ore District
Nysten, P., Holtstam, D. and Jonsson, E. (1999) The Långban minerals. In Långban - The mines,their minerals, geology and explorers (D. Holtstam and J. Langhof, eds.), Swedish Museum of Natural History and Raster Förlag, Stockholm & Chr. Weise Verlag, Munich, pp. 89-183.
Ukraine
 
  • Zaporizhia Oblast
    • Priazovske
Ryabchikov, I.D., Kogarko, L.N., Krivdik, S.G., and Ntaflos, T. (2008): Geology of Ore Deposits 50(6), 423-432.
USA
 
  • Arkansas
    • Pike Co.
      • Murfreesboro
Scott Smith, B. H. and Skinner, E. H. W. (1984): Kimberlite and American Mines, near Prairie Creek, Arkansas, in Kornprobst, J. ed.: Kimberlite III: documents (Annales Sci. L'Universite de Clermont Fd. 74, pt. 1, pp. 27-36).
Venezuela
 
  • Bolívar
    • Guaniamo
      • Quebrada Grande River
Sharygin, V. V., Sobolev, N. V., & Channer, D. M. D. (2009). Oscillatory-zoned crystals of pyrochlore-group minerals from the Guaniamo kimberlites, Venezuela. Lithos, 112, 976-985.
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.9.23 01:56:48 Page generated: 2020.8.28 20:08:08
Go to top of page