登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Starkeyite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About StarkeyiteHide

Formula:
MgSO4 · 4H2O
Colour:
White to very pale yellow or pale greenish white.
Lustre:
Dull, Earthy
Hardness:
2 - 3
Specific Gravity:
2
Crystal System:
Monoclinic
Member of:
Name:
Named in 1956 by Oliver Rudolph Grawe for the type locality, the Starkey Mine in Madison County, Missouri, USA.
Rozenite Group.
Closely related to cranswickite.

This is a rare mineral, found at only a few localities, then it is usually found as white to very pale yellow or very pale greenish white powdery efflorescences. Good crystals are extremely rare, perhaps unheard of.


Classification of StarkeyiteHide

Approved, 'Grandfathered' (first described prior to 1959)
7.CB.15

7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
Dana 7th ed.:
29.6.6.2
29.6.6.2

29 : HYDRATED ACID AND NORMAL SULFATES
6 : AXO4·xH2O
25.3.3

25 : Sulphates
3 : Sulphates of Mg

Physical Properties of StarkeyiteHide

Dull, Earthy
Transparency:
Translucent, Opaque
Colour:
White to very pale yellow or pale greenish white.
Streak:
White
Hardness:
2 - 3 on Mohs scale
Tenacity:
Brittle
Fracture:
Irregular/Uneven
Density:
2 g/cm3 (Measured)    2.007 g/cm3 (Calculated)

Optical Data of StarkeyiteHide

Type:
Biaxial (+)
RI values:
nα = 1.490 nβ = 1.491 nγ = 1.497
2V:
Measured: 50° , Calculated: 46°
Birefringence:
0.007
Max Birefringence:
δ = 0.007
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
none
Pleochroism:
Non-pleochroic

Chemical Properties of StarkeyiteHide

Formula:
MgSO4 · 4H2O
IMA Formula:
Mg(SO4) · 4H2O

Crystallography of StarkeyiteHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
P21/b
Cell Parameters:
a = 5.92 Å, b = 13.6 Å, c = 7.91 Å
β = 90.85°
Ratio:
a:b:c = 0.435 : 1 : 0.582
Unit Cell V:
636.78 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Forms not reported, typically found as powdery efflorescences.
Twinning:
Not reported.

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
6.83Å(50)
5.43Å(80)
4.70Å(40)
4.46Å(100)
3.95Å(70)
3.40Å(50)
3.22Å(40)
2.95Å(60)

Geological EnvironmentHide

Geological Setting:
A secondary mineral sometimes found in the oxidized zone of sulfide mineral deposits, resulting from the decomposition of pyrite and marcasite. May form from the dehydration of hexahydrite (Chou, 2005).

Type Occurrence of StarkeyiteHide

Synonyms of StarkeyiteHide

Other Language Names for StarkeyiteHide

Varieties of StarkeyiteHide

Relationship of Starkeyite to other SpeciesHide

Member of:
Other Members of this group:
Aplowite(Co,Mn,Ni)SO4 · 4H2OMon. 2/m
Boyleite(Zn,Mg)SO4 · 4H2OMon. 2/m : P21/b
DrobeciteCdSO4 · 4H2OMon. 2/m : P21/m
Ilesite(Mn,Zn,Fe)SO4 · 4H2OMon. 2/m
RozeniteFeSO4 · 4H2OMon. 2/m : P21/b

Common AssociatesHide

PyriteFeS2
Associated Minerals Based on Photo Data:
1 photo of Starkeyite associated with Niahite(NH4)(Mn2+,Mg)(PO4) · H2O
1 photo of Starkeyite associated with McallisteriteMg2[B6O7(OH)6]2 · 9H2O
1 photo of Starkeyite associated with HexahydriteMgSO4 · 6H2O

Related Minerals - Nickel-Strunz GroupingHide

7.CB.05Dwornikite(Ni,Fe)SO4 · H2OMon. 2/m : B2/b
7.CB.05GunningiteZnSO4 · H2OMon. 2/m : B2/b
7.CB.05KieseriteMgSO4 · H2OMon. 2/m
7.CB.05Poitevinite(Cu,Fe)SO4 · H2OTric.
7.CB.05SzmikiteMnSO4 · H2OMon.
7.CB.05SzomolnokiteFeSO4 · H2OMon. 2/m : B2/b
7.CB.05CobaltkieseriteCoSO4 · H2OMon. 2/m : B2/b
7.CB.07SanderiteMgSO4 · 2H2OOrth. 2 2 2 : P21 21 21
7.CB.10BonattiteCuSO4 · 3H2OMon.
7.CB.15Aplowite(Co,Mn,Ni)SO4 · 4H2OMon. 2/m
7.CB.15Boyleite(Zn,Mg)SO4 · 4H2OMon. 2/m : P21/b
7.CB.15Ilesite(Mn,Zn,Fe)SO4 · 4H2OMon. 2/m
7.CB.15RozeniteFeSO4 · 4H2OMon. 2/m : P21/b
7.CB.15DrobeciteCdSO4 · 4H2OMon. 2/m : P21/m
7.CB.15CranswickiteMgSO4 · 4H2OMon. m : Bb
7.CB.20ChalcanthiteCuSO4 · 5H2OTric. 1 : P1
7.CB.20JôkokuiteMnSO4 · 5H2OTric.
7.CB.20PentahydriteMgSO4 · 5H2OTric.
7.CB.20SiderotilFeSO4 · 5H2OTric.
7.CB.25Bianchite(Zn,Fe)SO4 · 6H2OMon. 2/m : P2/m
7.CB.25Chvaleticeite(Mn,Mg)SO4 · 6H2OMon. 2/m : B2/b
7.CB.25FerrohexahydriteFeSO4 · 6H2OMon. 2/m : B2/b
7.CB.25HexahydriteMgSO4 · 6H2OMon. 2/m : P2/m
7.CB.25Moorhouseite(Co,Ni,Mn)SO4 · 6H2OMon.
7.CB.25Nickelhexahydrite(Ni,Mg,Fe)SO4 · 6H2OMon.
7.CB.30RetgersiteNiSO4 · 6H2OTet. 4 2 2 : P41 21 2
7.CB.35BieberiteCoSO4 · 7H2OMon. 2/m : P2/m
7.CB.35BoothiteCuSO4 · 7H2OMon.
7.CB.35MallarditeMnSO4 · 7H2OMon. 2/m : P2/m
7.CB.35MelanteriteFe2+(H2O)6SO4 · H2OMon. 2/m : P21/b
7.CB.35Zincmelanterite(Zn,Cu,Fe)SO4 · 7H2OMon.
7.CB.35AlpersiteMg(SO4) · 7H2OMon. 2/m : P21/b
7.CB.40EpsomiteMgSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.40GoslariteZnSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.40MorenositeNiSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.45AlunogenAl2(SO4)3 · 17H2OTric. 1
7.CB.45Meta-alunogenAl2(SO4)3 · 12H2O
7.CB.50AluminocoquimbiteAl2Fe2(SO4)6(H2O)12·6H2OTrig. 3m (3 2/m) : P3 1c
7.CB.55CoquimbiteAlFe3(SO4)6(H2O)12·6H2OTrig. 3m (3 2/m) : P3 1c
7.CB.55ParacoquimbiteFe4(SO4)6(H2O)12· 6H2OTrig. 3 : R3
7.CB.55Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2OOrth. mmm (2/m 2/m 2/m) : Pnma
7.CB.60KorneliteFe2(SO4)3 · 7H2OMon. 2/m : P21/m
7.CB.65QuenstedtiteFe2(SO4)3 · 11H2OTric. 1 : P1
7.CB.70LauseniteFe2(SO4)3·5H2OMon. 2/m : P21/m
7.CB.75LishizheniteZnFe2(SO4)4 · 14H2OTric. 1 : P1
7.CB.75RömeriteFe2+Fe3+2(SO4)4 · 14H2OTric. 1 : P1
7.CB.80RansomiteCuFe2(SO4)4 · 6H2OMon. 2/m : P21/b
7.CB.85ApjohniteMn2+Al2(SO4)4 · 22H2OMon.
7.CB.85BíliniteFe2+Fe3+2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85Dietrichite(Zn,Fe2+,Mn2+)Al2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85HalotrichiteFeAl2(SO4)4 · 22H2OMon. 2 : P2
7.CB.85PickeringiteMgAl2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85Redingtonite(Fe2+,Mg,Ni)(Cr,Al)2(SO4)4·22H2OMon.
7.CB.85Wupatkiite(Co,Mg,Ni)Al2(SO4)4·22H2OMon.
7.CB.90MeridianiiteMgSO4 · 11H2OTric. 1 : P1

Related Minerals - Dana Grouping (8th Ed.)Hide

29.6.6.1RozeniteFeSO4 · 4H2OMon. 2/m : P21/b
29.6.6.3Ilesite(Mn,Zn,Fe)SO4 · 4H2OMon. 2/m
29.6.6.4Aplowite(Co,Mn,Ni)SO4 · 4H2OMon. 2/m
29.6.6.5Boyleite(Zn,Mg)SO4 · 4H2OMon. 2/m : P21/b
29.6.6.7CranswickiteMgSO4 · 4H2OMon. m : Bb
29.6.6.8MeridianiiteMgSO4 · 11H2OTric. 1 : P1

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

25.3.1KieseriteMgSO4 · H2OMon. 2/m
25.3.2SanderiteMgSO4 · 2H2OOrth. 2 2 2 : P21 21 21
25.3.4PentahydriteMgSO4 · 5H2OTric.
25.3.5HexahydriteMgSO4 · 6H2OMon. 2/m : P2/m
25.3.6EpsomiteMgSO4 · 7H2OOrth. 2 2 2 : P21 21 21
25.3.7CaminiteMg7(SO4)5(OH)4 · H2OTet.
25.3.8VanthoffiteNa6Mg(SO4)4Mon. 2/m : P21/b
25.3.9BlöditeNa2Mg(SO4)2 · 4H2OMon. 2/m
25.3.10KonyaiteNa2Mg(SO4)2 · 5H2OMon. 2/m : P21/b
25.3.11LöweiteNa12Mg7(SO4)13 · 15H2OTrig.
25.3.12UklonskoviteNaMg(SO4)F · 2H2OMon.
25.3.13LangbeiniteK2Mg2(SO4)3Iso. 2 3 : P21 3
25.3.14LeoniteK2Mg(SO4)2 · 4H2OMon. 2/m
25.3.15PicromeriteK2Mg(SO4)2 · 6H2OMon. 2/m
25.3.16Efremovite(NH4)2Mg2(SO4)3Iso.
25.3.17Boussingaultite(NH4)2Mg(SO4)2 · 6H2OMon. 2/m : P21/b
25.3.18PickeringiteMgAl2(SO4)4 · 22H2OMon. 2/m : P21/b

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for StarkeyiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Missouri Geological Survey and Water Resources, ser.2 (1945): 30: 209-210.
American Mineralogist (1956): 41: 662.
Canadian Mineralogist (1973): 12: 229.
Acta Crystallographica: 15: 815-826.
Acta Crystallographica: 17: 863-869.
Snetsinger, Kenneth G. (1973) Ferroan starkeyite from Del Norte County, California. Canadian Mineralogist: 12: 229.
Snetsinger, Kenneth G. (1975) What’s in a name: starkeyite vs. leonhardite. Mineralogical Record: 6: 144-145.
Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig, and King, Vandall T. (1997), Dana's New Mineralogy : The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 603.
Chou, I. Ming (2005)Determination Of Hexahydrite-Starkeyite Equilibria By The Humidity-Buffer Technique At 0.1 Mpa: Implications For The Martian H2O Cycle, Geological Society of America Abstracts with Programs, Vol. 37, No. 7, p. 55

Internet Links for StarkeyiteHide

Localities for StarkeyiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Antarctica
 
  • Eastern Antarctica
    • American Highland
      • Grove Mountains
Li, X., Liu, X., Ju, Y., & Huang, F. (2003). Properties of soils in Grove Mountains, East Antarctica. Science in China Series D: Earth Sciences, 46(7), 683-693.
Argentina
 
  • San Juan Province
    • Calingasta Department
      • Calingasta
        • Sierra del Tontal
Ron C. Peterson (2011) Cranswickite MgSO4.4H2O, a new mineral from Calingasta, Argentina
Australia
 
  • Western Australia
    • Wiluna Shire
Wilson, S.A., Harrison, A.L., Dipple, G.M., Power, I.M., Barker, S.L.L., Ulrich, M.K., Fallon, S.J., Raudsepp, M., Southam, G. (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining. International Journal of Greenhouse Gas Control 25 121-140
Austria
 
  • Styria
    • Liezen District
      • Admont
R. Exel: Die Mineralien und Erzlagerstätten Österreichs (1993)
Canada
 
  • Manitoba
    • Snow Lake District
Sabina, A.P. (1972) Rocks and mineral for the collector: GSCP 72-1-27, 65.
  • Québec
    • Abitibi-Témiscamingue
      • Abitibi RCM
        • Barraute
SABINA, A.P. (2003): Rocks & Minerals for the collector; Kirkland Lake - Rouyn-Noranda - Val d'Or, Ontario & Quebec. GSC Misc. Report 77, 175.
  • Saskatchewan
Shang, Y. (2000). Mineralogy, lithostratigraphy and geochemistry of North Ingebright Lake, Saskatchewan, Canada. PhD thesis University of Manitoba.
Chile
 
  • Antofagasta
    • Antofagasta Province
Anthony, J. W. et al. (1997): Handbook of Mineralogy, Vol. 3, 35
China
 
  • Qinghai
    • Haixi Mongol and Tibetan Autonomous Prefecture
      • Mangnai City (Mangya Co.)
Shaoxiu Yang (1991): Journal of Lake Sciences 3(1), 1-10
  • Xinjiang
    • Bayin'gholin Autonomous Prefecture (Bayingolin Autonomous Prefecture; Bayinguoleng Autonomous Prefecture)
      • Ruoqiang Co. (Qakilik Co.; Chaqiliq Co.)
Yanling Tang (2005): Non-metallic deposits of Xinjiang, China [Zhongguo Xinjiang Fei Jinshu Kuangchuang]. Geological Publishing House (Beijing), 289 pp.
Costa Rica
 
  • Cartago Province
    • Irazú Volcano
Ulloa, A., Gázquez, F., Sanz Arranz, A., Medina García, J., Rull Pérez, F., Calaforra, J. M., ... & De Waele, J. (2018). Extremely high diversity of sulfate minerals in caves of the Irazú Volcano (Costa Rica) related to crater lake and fumarolic activity.
Czech Republic
 
  • Moravian-Silesian Region
    • Karviná District
Matýsek D., Jirásek J., Osovský M., Skupien P.. Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 2014, 78, 5, 1265-1286.
      • Orlová
Matýsek D., Jirásek J., Osovský M., Skupien P.. Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 2014, 78, 5, 1265-1286.
  • South Moravian Region
    • Brno-Country District
      • Oslavany
Hršelová, P., Cempírek, J., Houzar, S., Sejkora, J. (2013): S,F,Cl-rich mineral assemblages from burned spoil heaps in the Rosice-Oslavany coalfield, Czech Republic. Can. Mineral.: 51(1): 171-188
Greece
 
  • Attica
    • East Attica
      • Lavreotiki
        • Lavrion District Mines
          • Sounion area
Blaß, G., Fabritz, K. H., Mühlbauer, W. and Prachar, I. (1998): … Immer wieder Neues aus Lavrion (2). Mineralien-Welt 9 (6), 48-55 (in German).
Lapis, 24, 7/8 (1999)
  • East Macedonia and Thrace
    • Evros
Skarpelis, N., & Triantafyllidis, S. (2004). Environmental impact from supergene alteration and exploitation of a high sulphidation epithermal type mineralisation (Kirki, NE Greece). Applied Earth Science, 113(1), 110-116.
Hungary
 
  • Borsod-Abaúj-Zemplén County
    • Kazincbarcika District
      • Rudabánya
Szakáll: Minerals of Rudabánya, 2001; Sánoor Szakáll, Mária Foldvári, Gábor Papp, Péter Kovács-pálffy, Árpád Kovács (1997) Secondary Sulphate Minerals From Hungary. Acta Mineralogica-petrographica, Szeged, Xxxviii, Supplementum, 7-63.
Szakáll: Minerals of Rudabánya, 2001; Sánoor Szakáll, Mária Foldvári, Gábor Papp, Péter Kovács-pálffy, Árpád Kovács (1997) Secondary Sulphate Minerals From Hungary. Acta Mineralogica-petrographica, Szeged, Xxxviii, Supplementum, 7-63.
Szakáll: Minerals of Rudabánya, 2001; Sánoor Szakáll, Mária Foldvári, Gábor Papp, Péter Kovács-pálffy, Árpád Kovács (1997) Secondary Sulphate Minerals From Hungary. Acta Mineralogica-petrographica, Szeged, Xxxviii, Supplementum, 7-63.
    • Miskolc District
Mineral Species of Hungary, 2005
  • Heves County
    • Eger
      • Szarvaskő
ACTA MIN. PETR. Suppl. Tomus XXXVIII., 1997
  • Nógrád County
Iceland
 
  • Northeastern Region
    • Skútustaðahreppur
      • Myvatn
Carson, G. L. (2015). Hydrothermal Acid-sulfate Alteration at Krafla and Námafjall, Ne Iceland: Implications for Gusev Crater and Meridiani Planum, Mars. Masters thesis, University of Wisconsin-Milwaukee.
India
 
  • Rajasthan
    • Nagaur District
Sinha, R., & Smykatz-Kloss, W. (2003). Thermal characterization of lacustrine dolomites from the Sambhar Lake playa, Thar desert, India. Journal of thermal analysis and calorimetry, 71(3), 739-750.
Italy
 
  • Lombardy
    • Lecco Province
      • Vendrogno
- Del Caldo, A., Moro, C., Gramaccioli, C.M., Boscardin, M. (1973): Guida ai Minerali. Fratelli Fabbri, Ed., Milano, 208 pp.
  • Tuscany
    • Livorno Province
      • Elba Island
        • Capoliveri
          • Cape Calamita Mine (Calamita Mine)
C.L. Garavelli (1957) – Minerali di cobalto, bonattite, e solfato di Mg esaidrato e tetraidrato tra i minerali di alterazione del giacimento elbano di Capo Calamita Calamita – Rend. Soc. Min. It., 13: 268-270.
Japan
 
  • Fukushima Prefecture
    • Minamisōma City
Seki, Y., Hirano, T., & Watanabe, K. (1987). Salt crystallization decay and water-rock interaction of rock-cliff Budda sculptures at Yakushido Temple of Odaka Town, Fukushima, Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 82(7), 269-279.
  • Iwate Prefecture
    • Kamaishi City
Dr. Matsuo Nambu collection (curated by the Geological Survey of Japan)
Lebanon
 
  • South Governate
    • Jezzine District
Kruszewski, Ł., 2018/2019. Secondary sulfate minerals from Bhanine valley coals (South Lebanon) – a crystallochemical and geochemical study. Geological Quarterly (in press)
Mexico
 
  • Guerrero
    • Taxco de Alarcón
Yta, M., Mundo, N. F., Gutiérrez, C. D., Tovar, R. M., Almazán, A. D., & Mendoza, O. T. (2005). Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofísica internacional, 44(1), 49-64.
Morocco
 
  • Marrakesh-Safi Region
    • Marrakech Prefecture
      • Marrakech
Rachid Hakkou, Mostafa Benzaazoua and Bruno Bussière (2008): Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 1. Environmental Characterization. Mine Water and the Environment, 27, 145-159.
Namibia
 
  • Khomas Region
    • Windhoek Rural
      • Friedenau Farm 16
DILL, H.G., PÖLLMANN, H. , BOSECKER, K., HAHN, L. and MWIYA, S.(2002) Supergene mineralization in mining residues of the Matchless cupreous pyrite deposit (Namibia) – A clue to the origin of modern and fossil duricrusts in semiarid climates.- Journal of Geochemical Exploration, 75: 43-70
North Macedonia
 
  • Kavadarci Municipality
    • Rožden (Rozhden; Roszdan)
Rieck, B. (1993): Famous mineral localities: Allchar, Macedonia, Mineralogical Record, 24 (6), 437-449; Boevl, B., Bermanec, V., Serafimovski, T., Lepitkoval, S., & Mikulcic, S. (2001). Allchar Mineral Assemblage. Geologica Macedonica, Vol. 15-16, p. 1-23 (2001-2002) Suppl
Pakistan
 
  • Khyber Pakhtunkhwa
    • Swabi District
M. Qasim Jan, P.S.B. Colback & Masood Ahmad , (1985) Low-temperature Secondary Minerals from Tarbela. Geol. Bull. Univ. Peshawar, 18:189-197
Peru
 
  • Pasco
    • Pasco province
      • Cerro de Pasco
Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Poland
 
  • Lesser Poland Voivodeship
    • Olkusz Co.
      • Gmina Olkusz
Cabała, J., & Bzowska, G. (2008). Sulphate speleothems in Pomorzany Zn–Pb ore mine, southern Poland. Kras i speleologia, 12(21), 59-76.
  • Lower Silesian Voivodeship
    • Kłodzko Co.
      • Nowa Ruda
        • Słupiec Mine
Ciesielczukk, J., Kruszewski, Ł., Fabiańska, M.J., Misz-Kennan, M., Kowalski, A., Mysza, B., 2014: Efflorescences and gas composition emitted from the burning coal-waste dump in Słupiec, Lower Silesian Coal Basin, Poland. Proceedings of the International Symposium CEMC 2014, Skalský Dvůr, April 23-26th, 26-27
  • Silesian Voivodeship
    • Rybnik Co.
      • Gmina Czerwionka-Leszczyny
Parafiniuk, J. and Kruszewski, Ł. (2009): Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland). Geol. Quart., 53, 341-356. http://www.pgi.gov.pl/images/stories/G_Q/53_3/parafiniuk.pdf]
    • Wodzisław Co.
      • Radlin
Kruszewski, Ł., Fabiańska, M.J., Segit, T., Kusy, D., Motyliński, R., Ciesielczuk, J., Deput, E., (2019): Carbon-nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, ketones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland) – a re-investigation by means of in situ FTIR external database approach. Science of The Total Environment (in press)
Russia
 
  • Chelyabinsk Oblast
Cesnokov, B., Kotrly, M. and Nisanbajev, T. (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German).
  • Crimea
    • Balaklava area
Dobrovolskaya T.I., Polkanov Y.A. The Paleovolcano Fiolent. Giude (2004) - Simferopol, 2004, 19 p. (in Russ.) Oleg V. Zinchenko at al. (2008).The mineralogy of seasonal sulfates in the cape Fiolent - Zapiski Ukrainskogo Mineralogichnogo Tovaristva (Proceeding Ukrainian Mineralogical Society), 2008, #5, p. 75-83 (in Ukr.)
  • Kamchatka Krai
Okrugin, V. M. (2004). Miocene to Quaternary center volcanic, hydrothermal and ore-forming activity in the Southern Kamchatka. In Metallogeny of the Pacific Northwest (Russian Far East)-Tectonics, Magmatism and Metallogeny of Active Continental Margin, Interim IAGOD Conference, Excursion Guidebook, Dalnauka, Vladivostok, 2004 (pp. 147-176).
  • Sakha Republic (Yakutia)
    • Yana-Kolyma Foldbelt
Zayakina, N. V. (2019, March). Cranswickite—a rare tetrahydrate sulfate of magnesium MgSO4∙ 4H2O, the new find in Yakutia. In Proceedings of the Russian Mineralogical Society (Vol. 148, No. 1, pp. 49-53).
Senegal
 
  • Ziguinchor Region
Montoroi, J. P. (1995) Mise eli évidence d'une séquence de précipitation des sels dails les sols sulfatés acides d'une vallée aménagée de Basse-Casamance (Sénégal). C.R. Acad. Sci. Paris, t. 320, série II a, p. 395-402
Slovakia
 
  • Banská Bystrica Region
    • Banská Štiavnica District
      • Vysoká
Koděra, M. et al., 1986 a 1990 : Topografická mineralógia Slovenska, diel 1- 3, Veda – Vydavateľstvo SAV, Bratislava, 1990, 1 – 1590
    • Lučenec District
Ďuďa,R., Mrázek,Z., Košuth,M., 1984: Postmagmatická zeolitová mineralizácia Cérovej vrchoviny. Min.Slovaca, 16,2,157 - 172
    • Revúca District
      • Jelšava
Koděra, M. et al., 1986 a 1990 : Topografická mineralógia Slovenska, diel 1- 3, Veda – Vydavateľstvo SAV, Bratislava, 1990, 1 – 1590
Spain
 
  • Andalusia
    • Huelva
      • Minas de Riotinto
        • Rio Tinto Mines (Riotinto Mines)
Romero, A., I. Gonzalez & E. Galan (2006): The role of efflorescent sulfates in the storage of trace elements in stream waters polluted by acid mine-drainage: the case of Peña del Hierro, southwestern Spain. Can. Mineral. 44, 1431-1446.
      • Nerva
Romero, A., I. Gonzalez & E. Galan (2006): The role of efflorescent sulfates in the storage of trace elements in stream waters polluted by acid mine-drainage: the case of Pena del Hierro, southwestern Spain. Canadian Mineralogist 44, 1431-1446.
  • Murcia
    • Cartagena
      • Sierra Minera de Cartagena-La Unión
        • Llano del Beal
          • Cabezo de Ponce
FMF Forum
Sweden
 
  • Stockholm County
    • Stockholm
Jalilehvand, F., Sandstrom, M., Persson, I., Gelius, U., & Frank, P. (2001). Acidity and Salt Precipitation on the Vasa; The Sulfur Problem. Proceedings 8th ICOM-CC WO AM Conference Stockholm 11-15 June 2001
Switzerland
 
  • Grisons
    • Poschiavo Valley
      • Poschiavo (Puschlav)
        • Bernina Pass area
Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p.
Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p.
Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p.
        • Selva
Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p.
  • Valais
    • Goms
      • Binn
        • Fäld (Imfeld; Im Feld; Feld)
Analyses Nicolas Meisser, MGL Lausanne: XRD NM 5087 (15/11/2017) + EDXS NM 3228 (27/11/2017)
Tunisia
 
  • Tataouine
Smykatz-Kloss, W., & Roy, P. D. (2010). Mineralogía de evaporitas y geoquímica de elementos mayores como herramientas para la investigación paleoclimática en regiones áridas: una síntesis. Boletín de la Sociedad Geológica Mexicana, 62(3), 379-390.
Turkey
 
  • Konya Province
van Doesburg, J.D.J., L. Vergouwen, and L. van der Plas (1982): Konyaite, Na2Mg(SO4)2•5H2O, a new mineral from the Great Konya Basin, Turkey. American Mineralogist 67, 1035-1038.
UK
 
  • England
    • North Yorkshire
      • Scarborough
Smith, F.W., Dearlove, J.P.L., Kemp, S.J., Bell, C.P., Milne, C.J. and Pottas, T.L. (2014) Potash – Recent exploration developments in North Yorkshire. Pp. 45-50 in Hunger, E., Brown, T. J. and Lucas, G. (Eds.) Proceedings of the 17th Extractive Industry Geology Conference, EIG Conferences Ltd. 202pp
USA
 
  • Arizona
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 380; Wenrich, K.J. & H.B. Sutphin (1988), Recognition of breccia pipes in northern Arizona, AZ Bur. Geol. Min. Tech. Fieldnotes: 18: 1-5, II.
    • Pinal Co.
      • San Manuel Mining District
        • San Manuel
          • San Manuel Mine (Apex Lead & Vanadium Mining Corp Mine; Quarelli group)
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 251, 264, 380; Anthony, J.W. & W.J. McLean (1976), Jurbanite, a new post-mining aluminum sulfate mineral from San Manuel, AZ, Am.Min.: 61: 1-4.
  • California
    • Del Norte Co.
      • Klamath Mountains
Gail E. Dunning and Joseph F. Cooper, Jr. (2002) Paragenesis of Troilite from the Low Divide District, Del Norte County, California
          • Low Divide
Snetsinger, K.G. (1973) Ferroan starkeyite from Del Norte County, California. Canadian Mineralogist: 12: 229; Snetsinger, K.G. (1975) What’s in a name: starkeyite vs. leonhardite. Mineralogical Record: 6: 144-145; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 266.
California Geology: 48 (5): 119
    • Imperial Co.
      • Niland
Adams, P., & Lynch, D. (2014). A mineralogical inventory of geothermal features southeast of the Salton Sea, Imperial County, California. Trough to trough: The Colorado River and the Salton Sea (Reynolds, R, 39-43.
  • Colorado
    • Fremont Co.
      • Canon City Mining District
        • Canon City
Minerals of Colorado (1997) Eckel, E. B.
    • Garfield Co.
Minerals of Colorado (1997) Eckel, E. B.
    • Mesa Co.
Minerals of Colorado (1997) Eckel, E. B.
    • Moffat Co.
      • Piceance Basin
Minerals of Colorado (1997) E.B. Eckel
    • Montezuma Co.
      • Mesa Verde National Park
Minerals of Colorado (1997) E.B. Eckel
    • Rio Blanco Co.
Minerals of Colorado (1997) Eckel, E. B.
MILTON, C. (1977): Mineralogy of the Green River Formation. Mineralogical Record 8, 368-379.
  • Michigan
    • Marquette Co.
      • Ishpeming
Mineralogy of Michigan (2004) Heinrich & Robinson
  • Missouri
    • Madison Co.
Grawe (1956); Min.Rec.:6:144 (1975); Acta Cryst.:17:863 (1964).; Am Min 41:662
  • Nevada
    • Eureka Co.
      • Lynn Mining District
NBMG Spec. Pub. 31 Minerals of Nevada
  • New Jersey
    • Sussex County
      • Franklin Mining District
        • Ogdensburg
          • Sterling Hill
Dunn(1995):Pt5:639.
  • Tennessee
    • Sevier Co.
Flohr, M.J.K., Dillenburg, R.G., and Plumlee, G.S. (1995): Characterization of secondary minerals formed as the result of weathering of the Anakeesta Formation, Alum Cave, Great Smoky Mountains National Park, Tennessee: USGS Open File Report #95-477, 24 p.
Rocks & Min., March 1998.
  • Virginia
Minerals of Virginia 1990 by R. V. Dietrich
Minerals of Virginia 1990 by R. V. Dietrich
Minerals of Virginia 1990 by R. V. Dietrich
    • Rockbridge Co.
      • Glasgow
Rocks & Min.: 60:157.
Minerals of Virginia 1990 by R. V. Dietrich
    • Wise Co.
      • East Stone Gap
Minerals of Virginia, 1990 by R. V. Dietrich
Zimbabwe
 
  • Mashonaland West
    • Kadoma District
Frei, Martina (2005) Composition, formation, and leaching behaviour of supergene, polymetallic ores from the Sanyati deposit (Zimbabwe): A case study
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.1.22 21:28:58 Page generated: 2020.1.22 01:19:16
Go to top of page