Starkeyite
This page is currently not sponsored. Click here to sponsor this page.
About Starkeyite
Formula:
MgSO4 · 4H2O
Colour:
White to very pale yellow or pale greenish white.
Lustre:
Dull, Earthy
Hardness:
2 - 3
Specific Gravity:
2
Crystal System:
Monoclinic
Member of:
Name:
Named in 1956 by Oliver Rudolph Grawe for the type locality, the Starkey Mine in Madison County, Missouri, USA.
Type Locality:
Rozenite Group.
Closely related to cranswickite.
This is a rare mineral, found at only a few localities, then it is usually found as white to very pale yellow or very pale greenish white powdery efflorescences. Good crystals are extremely rare, perhaps unheard of.
Closely related to cranswickite.
This is a rare mineral, found at only a few localities, then it is usually found as white to very pale yellow or very pale greenish white powdery efflorescences. Good crystals are extremely rare, perhaps unheard of.
Classification of Starkeyite
Approved, 'Grandfathered' (first described prior to 1959)
6/C.03-10
7.CB.X
7.CB.15
7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
Dana 7th ed.:
29.6.6.2
29.6.6.2
29 : HYDRATED ACID AND NORMAL SULFATES
6 : AXO4·xH2O
29 : HYDRATED ACID AND NORMAL SULFATES
6 : AXO4·xH2O
25.3.3
25 : Sulphates
3 : Sulphates of Mg
25 : Sulphates
3 : Sulphates of Mg
Physical Properties of Starkeyite
Dull, Earthy
Transparency:
Translucent, Opaque
Colour:
White to very pale yellow or pale greenish white.
Streak:
White
Hardness:
2 - 3 on Mohs scale
Tenacity:
Brittle
Fracture:
Irregular/Uneven
Density:
2 g/cm3 (Measured) 2.007 g/cm3 (Calculated)
Optical Data of Starkeyite
Type:
Biaxial (+)
RI values:
nα = 1.490 nβ = 1.491 nγ = 1.497
2V:
Measured: 50° , Calculated: 46°
Birefringence:
0.007
Max Birefringence:
δ = 0.007

Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
none
Pleochroism:
Non-pleochroic
Chemical Properties of Starkeyite
Formula:
MgSO4 · 4H2O
IMA Formula:
Mg(SO4) · 4H2O
Elements listed:
Crystallography of Starkeyite
Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
P21/b
Cell Parameters:
a = 5.92 Å, b = 13.6 Å, c = 7.91 Å
β = 90.85°
β = 90.85°
Ratio:
a:b:c = 0.435 : 1 : 0.582
Unit Cell V:
636.78 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Forms not reported, typically found as powdery efflorescences.
Twinning:
Not reported.
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0009275 | Starkeyite | Baur W H (1962) Zur kristallchemie der salzhydrate. Die kristallstrukturen von MgSO4*4H2O (leonhardtit) und FeSO4*4H2O (rozenit) Acta Crystallographica 15 815-826 | ![]() | 1962 | synthetic | 0 | 293 |
0009287 | Starkeyite | Baur W H (1964) On the crystal chemistry of salt hydrates. II. A neutron diffraction study of MgSO4*4H2O Acta Crystallographica 17 863-869 | ![]() | 1964 | synthetic | 0 | 293 |
CIF Raw Data - click here to close
X-Ray Powder Diffraction
Powder Diffraction Data:
d-spacing | Intensity |
---|---|
6.83 Å | (50) |
5.43 Å | (80) |
4.70 Å | (40) |
4.46 Å | (100) |
3.95 Å | (70) |
3.40 Å | (50) |
3.22 Å | (40) |
2.95 Å | (60) |
Geological Environment
Geological Setting:
A secondary mineral sometimes found in the oxidized zone of sulfide mineral deposits, resulting from the decomposition of pyrite and marcasite. May form from the dehydration of hexahydrite (Chou, 2005).
Type Occurrence of Starkeyite
Synonyms of Starkeyite
Other Language Names for Starkeyite
Varieties of Starkeyite
Relationship of Starkeyite to other Species
Member of:
Other Members of this group:
Common Associates
Pyrite | FeS2 |
Associated Minerals Based on Photo Data:
1 photo of Starkeyite associated with Niahite | (NH4)(Mn2+,Mg)(PO4) · H2O |
1 photo of Starkeyite associated with Mcallisterite | Mg2[B6O7(OH)6]2 · 9H2O |
1 photo of Starkeyite associated with Hexahydrite | MgSO4 · 6H2O |
Related Minerals - Nickel-Strunz Grouping
7.CB.05 | Dwornikite | (Ni,Fe)SO4 · H2O | Mon. 2/m : B2/b |
7.CB.05 | Gunningite | ZnSO4 · H2O | Mon. 2/m : B2/b |
7.CB.05 | Kieserite | MgSO4 · H2O | Mon. 2/m |
7.CB.05 | Poitevinite | (Cu,Fe)SO4 · H2O | Tric. |
7.CB.05 | Szmikite | MnSO4 · H2O | Mon. |
7.CB.05 | Szomolnokite | FeSO4 · H2O | Mon. 2/m : B2/b |
7.CB.05 | Cobaltkieserite | CoSO4 · H2O | Mon. 2/m : B2/b |
7.CB.07 | Sanderite | MgSO4 · 2H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.10 | Bonattite | CuSO4 · 3H2O | Mon. |
7.CB.15 | Aplowite | (Co,Mn,Ni)SO4 · 4H2O | Mon. 2/m |
7.CB.15 | Boyleite | (Zn,Mg)SO4 · 4H2O | Mon. 2/m : P21/b |
7.CB.15 | Ilesite | (Mn,Zn,Fe)SO4 · 4H2O | Mon. 2/m |
7.CB.15 | Rozenite | FeSO4 · 4H2O | Mon. 2/m : P21/b |
7.CB.15 | Drobecite | CdSO4 · 4H2O | Mon. 2/m : P21/m |
7.CB.15 | Cranswickite | MgSO4 · 4H2O | Mon. m : Bb |
7.CB.20 | Chalcanthite | CuSO4 · 5H2O | Tric. 1 : P1 |
7.CB.20 | Jôkokuite | MnSO4 · 5H2O | Tric. |
7.CB.20 | Pentahydrite | MgSO4 · 5H2O | Tric. |
7.CB.20 | Siderotil | FeSO4 · 5H2O | Tric. |
7.CB.25 | Bianchite | (Zn,Fe)SO4 · 6H2O | Mon. 2/m : P2/m |
7.CB.25 | Chvaleticeite | (Mn,Mg)SO4 · 6H2O | Mon. 2/m : B2/b |
7.CB.25 | Ferrohexahydrite | FeSO4 · 6H2O | Mon. 2/m : B2/b |
7.CB.25 | Hexahydrite | MgSO4 · 6H2O | Mon. 2/m : P2/m |
7.CB.25 | Moorhouseite | (Co,Ni,Mn)SO4 · 6H2O | Mon. |
7.CB.25 | Nickelhexahydrite | (Ni,Mg,Fe)SO4 · 6H2O | Mon. |
7.CB.30 | Retgersite | NiSO4 · 6H2O | Tet. 4 2 2 : P41 21 2 |
7.CB.35 | Bieberite | CoSO4 · 7H2O | Mon. 2/m : P2/m |
7.CB.35 | Boothite | CuSO4 · 7H2O | Mon. |
7.CB.35 | Mallardite | MnSO4 · 7H2O | Mon. 2/m : P2/m |
7.CB.35 | Melanterite | Fe2+(H2O)6SO4 · H2O | Mon. 2/m : P21/b |
7.CB.35 | Zincmelanterite | (Zn,Cu,Fe)SO4 · 7H2O | Mon. |
7.CB.35 | Alpersite | (Mg,Cu)(SO4) · 7H2O | Mon. 2/m : P21/b |
7.CB.40 | Epsomite | MgSO4 · 7H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.40 | Goslarite | ZnSO4 · 7H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.40 | Morenosite | NiSO4 · 7H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.45 | Alunogen | Al2(SO4)3 · 17H2O | Tric. 1 : P1 |
7.CB.45 | Meta-alunogen | Al2(SO4)3 · 12H2O | |
7.CB.50 | Aluminocoquimbite | Al2Fe2(SO4)6(H2O)12 · 6H2O | Trig. 3m (3 2/m) : P3 1c |
7.CB.55 | Coquimbite | AlFe3(SO4)6(H2O)12 · 6H2O | Trig. 3m (3 2/m) : P3 1c |
7.CB.55 | Paracoquimbite | Fe4(SO4)6(H2O)12 · 6H2O | Trig. 3 : R3 |
7.CB.55 | Rhomboclase | (H5O2)Fe3+(SO4)2 · 2H2O | Orth. mmm (2/m 2/m 2/m) : Pnma |
7.CB.60 | Kornelite | Fe2(SO4)3 · 7H2O | Mon. 2/m : P21/m |
7.CB.65 | Quenstedtite | Fe2(SO4)3 · 11H2O | Tric. 1 : P1 |
7.CB.70 | Lausenite | Fe2(SO4)3 · 5H2O | Mon. 2/m : P21/m |
7.CB.75 | Lishizhenite | ZnFe2(SO4)4 · 14H2O | Tric. 1 : P1 |
7.CB.75 | Römerite | Fe2+Fe3+2(SO4)4 · 14H2O | Tric. 1 : P1 |
7.CB.80 | Ransomite | CuFe2(SO4)4 · 6H2O | Mon. 2/m : P21/b |
7.CB.85 | Apjohnite | Mn2+Al2(SO4)4 · 22H2O | Mon. |
7.CB.85 | Bílinite | Fe2+Fe3+2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
7.CB.85 | Dietrichite | (Zn,Fe2+,Mn2+)Al2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
7.CB.85 | Halotrichite | FeAl2(SO4)4 · 22H2O | Mon. 2 : P2 |
7.CB.85 | Pickeringite | MgAl2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
7.CB.85 | Redingtonite | (Fe2+,Mg,Ni)(Cr,Al)2(SO4)4 · 22H2O | Mon. |
7.CB.85 | Wupatkiite | (Co,Mg,Ni)Al2(SO4)4 · 22H2O | Mon. |
7.CB.90 | Meridianiite | MgSO4 · 11H2O | Tric. 1 : P1 |
Related Minerals - Dana Grouping (8th Ed.)
29.6.6.1 | Rozenite | FeSO4 · 4H2O | Mon. 2/m : P21/b |
29.6.6.3 | Ilesite | (Mn,Zn,Fe)SO4 · 4H2O | Mon. 2/m |
29.6.6.4 | Aplowite | (Co,Mn,Ni)SO4 · 4H2O | Mon. 2/m |
29.6.6.5 | Boyleite | (Zn,Mg)SO4 · 4H2O | Mon. 2/m : P21/b |
29.6.6.7 | Cranswickite | MgSO4 · 4H2O | Mon. m : Bb |
29.6.6.8 | Meridianiite | MgSO4 · 11H2O | Tric. 1 : P1 |
Related Minerals - Hey's Chemical Index of Minerals Grouping
25.3.1 | Kieserite | MgSO4 · H2O | Mon. 2/m |
25.3.2 | Sanderite | MgSO4 · 2H2O | Orth. 2 2 2 : P21 21 21 |
25.3.4 | Pentahydrite | MgSO4 · 5H2O | Tric. |
25.3.5 | Hexahydrite | MgSO4 · 6H2O | Mon. 2/m : P2/m |
25.3.6 | Epsomite | MgSO4 · 7H2O | Orth. 2 2 2 : P21 21 21 |
25.3.7 | Caminite | Mg7(SO4)5(OH)4 · H2O | Tet. |
25.3.8 | Vanthoffite | Na6Mg(SO4)4 | Mon. 2/m : P21/b |
25.3.9 | Blödite | Na2Mg(SO4)2 · 4H2O | Mon. 2/m |
25.3.10 | Konyaite | Na2Mg(SO4)2 · 5H2O | Mon. 2/m : P21/b |
25.3.11 | Löweite | Na12Mg7(SO4)13 · 15H2O | Trig. |
25.3.12 | Uklonskovite | NaMg(SO4)F · 2H2O | Mon. |
25.3.13 | Langbeinite | K2Mg2(SO4)3 | Iso. 2 3 : P21 3 |
25.3.14 | Leonite | K2Mg(SO4)2 · 4H2O | Mon. 2/m |
25.3.15 | Picromerite | K2Mg(SO4)2 · 6H2O | Mon. 2/m |
25.3.16 | Efremovite | (NH4)2Mg2(SO4)3 | Iso. |
25.3.17 | Boussingaultite | (NH4)2Mg(SO4)2 · 6H2O | Mon. 2/m : P21/b |
25.3.18 | Pickeringite | MgAl2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
Other Information
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
References for Starkeyite
Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Missouri Geological Survey and Water Resources, ser.2 (1945): 30: 209-210.
American Mineralogist (1956): 41: 662.
Canadian Mineralogist (1973): 12: 229.
Acta Crystallographica: 15: 815-826.
Acta Crystallographica: 17: 863-869.
Snetsinger, Kenneth G. (1973) Ferroan starkeyite from Del Norte County, California. Canadian Mineralogist: 12: 229.
Snetsinger, Kenneth G. (1975) What’s in a name: starkeyite vs. leonhardite. Mineralogical Record: 6: 144-145.
Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig, and King, Vandall T. (1997), Dana's New Mineralogy : The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 603.
Chou, I. Ming (2005)Determination Of Hexahydrite-Starkeyite Equilibria By The Humidity-Buffer Technique At 0.1 Mpa: Implications For The Martian H2O Cycle, Geological Society of America Abstracts with Programs, Vol. 37, No. 7, p. 55
Internet Links for Starkeyite
mindat.org URL:
https://www.mindat.org/min-3752.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
Localities for Starkeyite
Locality List




All localities listed without proper references should be considered as questionable.
Antarctica | |
| Li, X., Liu, X., Ju, Y., & Huang, F. (2003). Properties of soils in Grove Mountains, East Antarctica. Science in China Series D: Earth Sciences, 46(7), 683-693. |
Argentina | |
| Ron C. Peterson (2011) Cranswickite MgSO4.4H2O, a new mineral from Calingasta, Argentina |
Australia | |
| Wilson, S.A., Harrison, A.L., Dipple, G.M., Power, I.M., Barker, S.L.L., Ulrich, M.K., Fallon, S.J., Raudsepp, M., Southam, G. (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining. International Journal of Greenhouse Gas Control 25 121-140 |
Austria | |
| R. Exel: Die Mineralien und Erzlagerstätten Österreichs (1993) |
Canada | |
| Sabina, A.P. (1972) Rocks and mineral for the collector: GSCP 72-1-27, 65. |
| SABINA, A.P. (2003): Rocks & Minerals for the collector; Kirkland Lake - Rouyn-Noranda - Val d'Or, Ontario & Quebec. GSC Misc. Report 77, 175. |
| Shang, Y. (2000). Mineralogy, lithostratigraphy and geochemistry of North Ingebright Lake, Saskatchewan, Canada. PhD thesis University of Manitoba. |
Chile | |
| Anthony, J. W. et al. (1997): Handbook of Mineralogy, Vol. 3, 35 |
| Marta, V. E. G. A., & Pueyo, J. (1996) Parental Brine Evolution in the Chilean Nitrate Deposits (Pedro de Valdivia, II Region de Antofagasta). Mineralogical and Petrographic Data. Third ISAG, S1 Malo (France), 17-19/9/1996 |
China | |
| Shaoxiu Yang (1991): Journal of Lake Sciences 3(1), 1-10 |
| Yanling Tang (2005): Non-metallic deposits of Xinjiang, China [Zhongguo Xinjiang Fei Jinshu Kuangchuang]. Geological Publishing House (Beijing), 289 pp. |
Costa Rica | |
| Ulloa, A., Gázquez, F., Sanz-Arranz, A., Medina, J., Rull, F., Calaforra, J.M., Alvarado, G.E., Martinez, M., Avard, G., de Moor, J., De Waele, J. (2018) Extremely high diversity of sulfate minerals in caves of the Irazú Volcano (Costa Rica) related to crater lake and fumarolic activity. International Journal of Speleology, 47(2), 229-246. |
Czech Republic | |
| Matýsek D., Jirásek J., Osovský M., Skupien P.. Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 2014, 78, 5, 1265-1286. |
| Matýsek D., Jirásek J., Osovský M., Skupien P.. Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 2014, 78, 5, 1265-1286. |
| Hršelová, P., Cempírek, J., Houzar, S., Sejkora, J. (2013): S,F,Cl-rich mineral assemblages from burned spoil heaps in the Rosice-Oslavany coalfield, Czech Republic. Can. Mineral.: 51(1): 171-188 |
Greece | |
| Blaß, G., Fabritz, K. H., Mühlbauer, W. and Prachar, I. (1998): … Immer wieder Neues aus Lavrion (2). Mineralien-Welt 9 (6), 48-55 (in German). |
Lapis, 24, 7/8 (1999) | |
| Skarpelis, N., & Triantafyllidis, S. (2004). Environmental impact from supergene alteration and exploitation of a high sulphidation epithermal type mineralisation (Kirki, NE Greece). Applied Earth Science, 113(1), 110-116. |
Hungary | |
| |
| Szakáll: Minerals of Rudabánya, 2001; Sánoor Szakáll, Mária Foldvári, Gábor Papp, Péter Kovács-pálffy, Árpád Kovács (1997) Secondary Sulphate Minerals From Hungary. Acta Mineralogica-petrographica, Szeged, Xxxviii, Supplementum, 7-63. |
Szakáll: Minerals of Rudabánya, 2001; Sánoor Szakáll, Mária Foldvári, Gábor Papp, Péter Kovács-pálffy, Árpád Kovács (1997) Secondary Sulphate Minerals From Hungary. Acta Mineralogica-petrographica, Szeged, Xxxviii, Supplementum, 7-63. | |
Szakáll: Minerals of Rudabánya, 2001; Sánoor Szakáll, Mária Foldvári, Gábor Papp, Péter Kovács-pálffy, Árpád Kovács (1997) Secondary Sulphate Minerals From Hungary. Acta Mineralogica-petrographica, Szeged, Xxxviii, Supplementum, 7-63. | |
| Mineral Species of Hungary, 2005 |
| ACTA MIN. PETR. Suppl. Tomus XXXVIII., 1997 |
| |
Iceland | |
| Carson, G. L. (2015). Hydrothermal Acid-sulfate Alteration at Krafla and Námafjall, Ne Iceland: Implications for Gusev Crater and Meridiani Planum, Mars. Masters thesis, University of Wisconsin-Milwaukee. |
India | |
| Sinha, R., & Smykatz-Kloss, W. (2003). Thermal characterization of lacustrine dolomites from the Sambhar Lake playa, Thar desert, India. Journal of thermal analysis and calorimetry, 71(3), 739-750. |
Italy | |
| - Del Caldo, A., Moro, C., Gramaccioli, C.M., Boscardin, M. (1973): Guida ai Minerali. Fratelli Fabbri, Ed., Milano, 208 pp. |
| C.L. Garavelli (1957) – Minerali di cobalto, bonattite, e solfato di Mg esaidrato e tetraidrato tra i minerali di alterazione del giacimento elbano di Capo Calamita Calamita – Rend. Soc. Min. It., 13: 268-270. |
Japan | |
| Seki, Y., Hirano, T., & Watanabe, K. (1987). Salt crystallization decay and water-rock interaction of rock-cliff Budda sculptures at Yakushido Temple of Odaka Town, Fukushima, Japan. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 82(7), 269-279. |
| Dr. Matsuo Nambu collection (curated by the Geological Survey of Japan) |
Lebanon | |
| Kruszewski, Ł., 2018/2019. Secondary sulfate minerals from Bhanine valley coals (South Lebanon) – a crystallochemical and geochemical study. Geological Quarterly (in press) |
Mexico | |
| Gazquez, et al., 2016, The Caves of Naica: a decade of research: Boletin geologico y Minero 1`27 (1) 147-`63 |
| Yta, M., Mundo, N. F., Gutiérrez, C. D., Tovar, R. M., Almazán, A. D., & Mendoza, O. T. (2005). Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofísica internacional, 44(1), 49-64. |
Morocco | |
| Rachid Hakkou, Mostafa Benzaazoua and Bruno Bussière (2008): Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 1. Environmental Characterization. Mine Water and the Environment, 27, 145-159. |
Namibia | |
| DILL, H.G., PÖLLMANN, H. , BOSECKER, K., HAHN, L. and MWIYA, S.(2002) Supergene mineralization in mining residues of the Matchless cupreous pyrite deposit (Namibia) – A clue to the origin of modern and fossil duricrusts in semiarid climates.- Journal of Geochemical Exploration, 75: 43-70 |
North Macedonia | |
| Rieck, B. (1993): Famous mineral localities: Allchar, Macedonia, Mineralogical Record, 24 (6), 437-449; Boevl, B., Bermanec, V., Serafimovski, T., Lepitkoval, S., & Mikulcic, S. (2001). Allchar Mineral Assemblage. Geologica Macedonica, Vol. 15-16, p. 1-23 (2001-2002) Suppl |
Pakistan | |
| M. Qasim Jan, P.S.B. Colback & Masood Ahmad , (1985) Low-temperature Secondary Minerals from Tarbela. Geol. Bull. Univ. Peshawar, 18:189-197 |
Peru | |
| Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110. |
Poland | |
| Cabała, J., & Bzowska, G. (2008). Sulphate speleothems in Pomorzany Zn–Pb ore mine, southern Poland. Kras i speleologia, 12(21), 59-76. |
| Ciesielczukk, J., Kruszewski, Ł., Fabiańska, M.J., Misz-Kennan, M., Kowalski, A., Mysza, B., 2014: Efflorescences and gas composition emitted from the burning coal-waste dump in Słupiec, Lower Silesian Coal Basin, Poland. Proceedings of the International Symposium CEMC 2014, Skalský Dvůr, April 23-26th, 26-27 |
| Parafiniuk, J. and Kruszewski, Ł. (2009): Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland). Geol. Quart., 53, 341-356. http://www.pgi.gov.pl/images/stories/G_Q/53_3/parafiniuk.pdf] |
| Kruszewski, Ł., Fabiańska, M.J., Segit, T., Kusy, D., Motyliński, R., Ciesielczuk, J., Deput, E., (2019): Carbon-nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, ketones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland) – a re-investigation by means of in situ FTIR external database approach. Science of The Total Environment (in press) |
Russia | |
| Cesnokov, B., Kotrly, M. and Nisanbajev, T. (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German). |
| Dobrovolskaya T.I., Polkanov Y.A. The Paleovolcano Fiolent. Giude (2004) - Simferopol, 2004, 19 p. (in Russ.) Oleg V. Zinchenko at al. (2008).The mineralogy of seasonal sulfates in the cape Fiolent - Zapiski Ukrainskogo Mineralogichnogo Tovaristva (Proceeding Ukrainian Mineralogical Society), 2008, #5, p. 75-83 (in Ukr.) |
| Okrugin, V. M. (2004). Miocene to Quaternary center volcanic, hydrothermal and ore-forming activity in the Southern Kamchatka. In Metallogeny of the Pacific Northwest (Russian Far East)-Tectonics, Magmatism and Metallogeny of Active Continental Margin, Interim IAGOD Conference, Excursion Guidebook, Dalnauka, Vladivostok, 2004 (pp. 147-176). |
| Zayakina, N. V. (2019, March). Cranswickite—a rare tetrahydrate sulfate of magnesium MgSO4∙ 4H2O, the new find in Yakutia. In Proceedings of the Russian Mineralogical Society (Vol. 148, No. 1, pp. 49-53). |
Senegal | |
| Montoroi, J. P. (1995) Mise eli évidence d'une séquence de précipitation des sels dails les sols sulfatés acides d'une vallée aménagée de Basse-Casamance (Sénégal). C.R. Acad. Sci. Paris, t. 320, série II a, p. 395-402 |
Slovakia | |
| Koděra, M. et al., 1986 a 1990 : Topografická mineralógia Slovenska, diel 1- 3, Veda – Vydavateľstvo SAV, Bratislava, 1990, 1 – 1590 |
| Ďuďa,R., Mrázek,Z., Košuth,M., 1984: Postmagmatická zeolitová mineralizácia Cérovej vrchoviny. Min.Slovaca, 16,2,157 - 172 |
| Koděra, M. et al., 1986 a 1990 : Topografická mineralógia Slovenska, diel 1- 3, Veda – Vydavateľstvo SAV, Bratislava, 1990, 1 – 1590 |
Spain | |
| Romero, A., I. Gonzalez & E. Galan (2006): The role of efflorescent sulfates in the storage of trace elements in stream waters polluted by acid mine-drainage: the case of Peña del Hierro, southwestern Spain. Can. Mineral. 44, 1431-1446. |
| Romero, A., I. Gonzalez & E. Galan (2006): The role of efflorescent sulfates in the storage of trace elements in stream waters polluted by acid mine-drainage: the case of Pena del Hierro, southwestern Spain. Canadian Mineralogist 44, 1431-1446. |
| FMF Forum |
Sweden | |
| Jalilehvand, F., Sandstrom, M., Persson, I., Gelius, U., & Frank, P. (2001). Acidity and Salt Precipitation on the Vasa; The Sulfur Problem. Proceedings 8th ICOM-CC WO AM Conference Stockholm 11-15 June 2001 |
Switzerland | |
| Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p. |
Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p. | |
Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p. | |
| Romani E. (2000): Andar per cristalli - Tesori nascosti. Centro studi del Museo mineralogico naturalistico di Bormio, 151 p. |
| Analyses Nicolas Meisser, MGL Lausanne: XRD NM 5087 (15/11/2017) + EDXS NM 3228 (27/11/2017) |
Tunisia | |
| Smykatz-Kloss, W., & Roy, P. D. (2010). Mineralogía de evaporitas y geoquímica de elementos mayores como herramientas para la investigación paleoclimática en regiones áridas: una síntesis. Boletín de la Sociedad Geológica Mexicana, 62(3), 379-390. |
Turkey | |
| van Doesburg, J.D.J., L. Vergouwen, and L. van der Plas (1982): Konyaite, Na2Mg(SO4)2•5H2O, a new mineral from the Great Konya Basin, Turkey. American Mineralogist 67, 1035-1038. |
UK | |
| Smith, F.W., Dearlove, J.P.L., Kemp, S.J., Bell, C.P., Milne, C.J. and Pottas, T.L. (2014) Potash – Recent exploration developments in North Yorkshire. Pp. 45-50 in Hunger, E., Brown, T. J. and Lucas, G. (Eds.) Proceedings of the 17th Extractive Industry Geology Conference, EIG Conferences Ltd. 202pp |
USA | |
| Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 380; Wenrich, K.J. & H.B. Sutphin (1988), Recognition of breccia pipes in northern Arizona, AZ Bur. Geol. Min. Tech. Fieldnotes: 18: 1-5, II. |
| Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 251, 264, 380; Anthony, J.W. & W.J. McLean (1976), Jurbanite, a new post-mining aluminum sulfate mineral from San Manuel, AZ, Am.Min.: 61: 1-4. |
| Gail E. Dunning and Joseph F. Cooper, Jr. (2002) Paragenesis of Troilite from the Low Divide District, Del Norte County, California |
| Snetsinger, K.G. (1973) Ferroan starkeyite from Del Norte County, California. Canadian Mineralogist: 12: 229; Snetsinger, K.G. (1975) What’s in a name: starkeyite vs. leonhardite. Mineralogical Record: 6: 144-145; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 266. |
California Geology: 48 (5): 119 | |
| Adams, P., & Lynch, D. (2014). A mineralogical inventory of geothermal features southeast of the Salton Sea, Imperial County, California. Trough to trough: The Colorado River and the Salton Sea (Reynolds, R, 39-43. |
| Minerals of Colorado (1997) Eckel, E. B. |
| Minerals of Colorado (1997) Eckel, E. B. |
| Minerals of Colorado (1997) Eckel, E. B. |
| Minerals of Colorado (1997) E.B. Eckel |
| Minerals of Colorado (1997) E.B. Eckel |
| Minerals of Colorado (1997) Eckel, E. B. |
MILTON, C. (1977): Mineralogy of the Green River Formation. Mineralogical Record 8, 368-379. | |
| Mineralogy of Michigan (2004) Heinrich & Robinson |
| Grawe (1956); Min.Rec.:6:144 (1975); Acta Cryst.:17:863 (1964).; Am Min 41:662 |
| NBMG Spec. Pub. 31 Minerals of Nevada |
| Dunn(1995):Pt5:639. |
| Flohr, M.J.K., Dillenburg, R.G., and Plumlee, G.S. (1995): Characterization of secondary minerals formed as the result of weathering of the Anakeesta Formation, Alum Cave, Great Smoky Mountains National Park, Tennessee: USGS Open File Report #95-477, 24 p. |
Rocks & Min., March 1998. | |
| Minerals of Virginia 1990 by R. V. Dietrich |
Minerals of Virginia 1990 by R. V. Dietrich | |
Minerals of Virginia 1990 by R. V. Dietrich | |
| Rocks & Min.: 60:157. |
Minerals of Virginia 1990 by R. V. Dietrich | |
| Minerals of Virginia, 1990 by R. V. Dietrich |
Zimbabwe | |
| Frei, Martina (2005) Composition, formation, and leaching behaviour of supergene, polymetallic ores from the Sanyati deposit (Zimbabwe): A case study |
Quick NavTopAbout StarkeyiteClassification Physical Properties Optical Data Chemical Properties Crystallography Crystal StructureX-Ray Powder DiffractionGeological EnvironmentType Occurrence SynonymsOther LanguagesVarietiesRelationshipsCommon AssociatesNickel-StrunzDanaHey's CIMOther InformationReferences Internet Links Localities Locality List
Sterling Mine, Sterling Hill, Ogdensburg, Franklin Mining District, Sussex County, New Jersey, USA