SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Schorlomite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About SchorlomiteHide

Formula:
Ca3Ti2(SiO4)(Fe3+O4)2
Colour:
Grayish black, black, may be tarnished blue; deep reddish brown
Lustre:
Sub-Metallic
Hardness:
7 - 7½
Specific Gravity:
3.862
Crystal System:
Isometric
Name:
For its visual resemblance to schorl
Garnet Group. Compare UM1982-16-SiO:AlCaFeTi And Morimotoite

Much of the recent material labelled "schorlomite" is mislabeled and is, strictly speaking, titanian andradite.

Visit gemdat.org for gemological information about Schorlomite.


Classification of SchorlomiteHide

Approved, 'Grandfathered' (first described prior to 1959)
8/A.08-120
9.AD.25

9 : SILICATES (Germanates)
A : Nesosilicates
D : Nesosilicates without additional anions; cations in [6] and/or greater coordination
51.4.3c.1

51 : NESOSILICATES Insular SiO4 Groups Only
4 : Insular SiO4 Groups Only with cations in [6] and >[6] coordination
14.9.35

14 : Silicates not Containing Aluminum
9 : Silicates of Ti

Physical Properties of SchorlomiteHide

Sub-Metallic
Colour:
Grayish black, black, may be tarnished blue; deep reddish brown
Streak:
black to red-orange or orange-brown
Hardness:
7 - 7½ on Mohs scale
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
Fracture:
Conchoidal
Density:
3.862 g/cm3 (Measured)    3.77 g/cm3 (Calculated)

Optical Data of SchorlomiteHide

Type:
Isotropic
RI values:
n = 1.94 - 1.98
Birefringence:
Isotropic minerals have no birefringence
Surface Relief:
Very High
Comments:
RI increases with titanium content

Chemical Properties of SchorlomiteHide

Formula:
Ca3Ti2(SiO4)(Fe3+O4)2
IMA Formula:
Ca3Ti2(SiFe3+2)O12
Common Impurities:
Na,Al,Mn,Mg,Na,K,H20,P,Zr,V

Crystallography of SchorlomiteHide

Crystal System:
Isometric
Class (H-M):
m3m (4/m 3 2/m) - Hexoctahedral
Space Group:
Ia3d
Setting:
Ia3d
Cell Parameters:
a = 12.15 Å
Unit Cell V:
1,793.61 ų (Calculated from Unit Cell)
Z:
8
Morphology:
trapezohedra and dodecahedra, up to 2 cm

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0005430SchorlomitePeterson R C, Locock A J, Luth R W (1995) Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite The Canadian Mineralogist 33 627-63119950293
0005431SchorlomitePeterson R C, Locock A J, Luth R W (1995) Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite The Canadian Mineralogist 33 627-63119950293
0008963SchorlomiteChakhmouradian A R, McCammon C A (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries Garnet Physics and Chemistry of Minerals 32 277-28920050293
0008964SchorlomiteChakhmouradian A R, McCammon C A (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries Garnet Physics and Chemistry of Minerals 32 277-28920050293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.

Geological EnvironmentHide

Geological Setting:
carbonatites, syenites, and phonolites; also in skarns

Type Occurrence of SchorlomiteHide

Place of Conservation of Type Material:
National Museum of Natural History, Washington, D.C., USA, 128705.
Geological Setting of Type Material:
Magnet Cove. T 36. R 17 W. S 21. Hot Springs Co., Arkansas.
Associated Minerals at Type Locality:
Reference:
Shepard C U (1846) On three new mineral species from Arkansas, and the discovery of the diamond in North Carolina. American Journal of Science and Arts 52, 249-254

Synonyms of SchorlomiteHide

Other Language Names for SchorlomiteHide

Simplified Chinese:钛榴石
Traditional Chinese:鈦榴石

Relationship of Schorlomite to other SpeciesHide

Other Members of this group:
HutcheoniteCa3Ti2(SiO4)(AlO4)2Iso. m3m (4/m 3 2/m) : Ia3d
IrinarassiteCa3Sn2(SiO4)(AlO4)2Iso. m3m (4/m 3 2/m) : Ia3d
KerimasiteCa3Zr2(SiO4)(Fe3+O4)2Iso. m3m (4/m 3 2/m) : Ia3d
KimzeyiteCa3Zr2(SiO4)(AlO4)2Iso.
ToturiteCa3Sn2(SiO4)(Fe3+O4)2Iso. m3m (4/m 3 2/m) : Ia3d
Forms a series with:

Common AssociatesHide

Associated Minerals Based on Photo Data:
25 photos of Schorlomite associated with NephelineNa3K(Al4Si4O16)
3 photos of Schorlomite associated with MagnetiteFe2+Fe3+2O4
1 photo of Schorlomite associated with CalciteCaCO3
1 photo of Schorlomite associated with VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
1 photo of Schorlomite associated with AndraditeCa3Fe3+2(SiO4)3
1 photo of Schorlomite associated with PhlogopiteKMg3(AlSi3O10)(OH)2
1 photo of Schorlomite associated with MeliliteCa2(Al,Mg,Fe)((Al,Si,B)SiO7)
1 photo of Schorlomite associated with OrthoclaseK(AlSi3O8)
1 photo of Schorlomite associated with Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
1 photo of Schorlomite associated with FluorapatiteCa5(PO4)3F

Related Minerals - Nickel-Strunz GroupingHide

9.AD.AdrianiteCa12(Al4Mg3Si7)O32Cl6Iso. 4 3m : I4 3d
9.AD.05LarniteCa2SiO4Mon. 2/m
9.AD.10Calcio-olivineCa2SiO4Orth. mmm (2/m 2/m 2/m)
9.AD.15MerwiniteCa3Mg(SiO4)2Mon. 2/m : P21/b
9.AD.20BredigiteCa7Mg(SiO4)4Orth.
9.AD.25AndraditeCa3Fe3+2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25AlmandineFe2+3Al2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25CalderiteMn2+3Fe3+2(SiO4)3Iso.
9.AD.25GoldmaniteCa3V3+2(SiO4)3Iso.
9.AD.25GrossularCa3Al2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25HenritermieriteCa3Mn3+2(SiO4)2[◻(OH)4]Tet. 4/mmm (4/m 2/m 2/m) : I41/acd
9.AD.25HibschiteCa3Al2(SiO4)3-x(OH)4xIso. m3m (4/m 3 2/m) : Ia3d
9.AD.25HydroandraditeCa3Fe3+2(SiO4)3-x(OH)4x
9.AD.25KatoiteCa3Al2[◻(OH)4]3Iso.
9.AD.25KimzeyiteCa3Zr2(SiO4)(AlO4)2Iso.
9.AD.25KnorringiteMg3Cr2(SiO4)3Iso.
9.AD.25MajoriteMg3(MgSi)(SiO4)3Iso.
9.AD.25MorimotoiteCa3(TiFe2+)(SiO4)3Iso.
9.AD.25PyropeMg3Al2(SiO4)3Iso.
9.AD.25SpessartineMn2+3Al2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25UvaroviteCa3Cr2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25Wadalite(Ca,Mg)6(Al,Fe3+)4((Si,Al)O4)3O4Cl3Iso. 4 3m : I4 3d
9.AD.25HoltstamiteCa3Al2(SiO4)2[◻(OH)4]Tet. 4/mmm (4/m 2/m 2/m) : I41/acd
9.AD.25KerimasiteCa3Zr2(SiO4)(Fe3+O4)2Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25ToturiteCa3Sn2(SiO4)(Fe3+O4)2Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25MomoiiteMn2+3V3+2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25EringaiteCa3Sc2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25EltyubyuiteCa12Fe3+10Si4O32Cl6Iso. 4 3m : I4 3d
9.AD.25HutcheoniteCa3Ti2(SiO4)(AlO4)2Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.30CoffiniteU(SiO4) · nH2OTet.
9.AD.30HafnonHfSiO4Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
9.AD.30ThoriteTh(SiO4)Tet.
9.AD.30ZirconZr(SiO4)Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
9.AD.30Stetindite-(Ce)Ce(SiO4)Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
9.AD.35HuttoniteThSiO4Mon.
9.AD.35Tombarthite-(Y)Y4(Si,H4)4O12-x(OH)4+2xMon.
9.AD.40EulytineBi4(SiO4)3Iso. 4 3m : I4 3d
9.AD.45ReiditeZrSiO4Tet. 4/m : I41/a

Related Minerals - Dana Grouping (8th Ed.)Hide

51.4.3c.2KimzeyiteCa3Zr2(SiO4)(AlO4)2Iso.
51.4.3c.3MorimotoiteCa3(TiFe2+)(SiO4)3Iso.

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

14.9.1NatisiteNa2Ti(SiO4)OTet.
14.9.2LorenzeniteNa2Ti2(Si2O6)O3Orth. mmm (2/m 2/m 2/m) : Pbcn
14.9.3LintisiteLiNa3Ti2(Si2O6)2O2 · 2H2OMon.
14.9.4DavaniteK2TiSi6O15Tric.
14.9.5KazakoviteNa6Mn2+Ti(Si6O18)Trig.
14.9.6TitaniteCaTi(SiO4)OMon. 2/m : P21/b
14.9.7OhmiliteSr3(Ti,Fe3+)(Si4O12)(O,OH) · 2-3H2OMon.
14.9.8Lamprophyllite(Na,Mn2+)3(Sr,Na)2(Ti,Fe3+)3(Si2O7)2O2(OH,O,F)2Mon.
14.9.9BenitoiteBaTi(Si3O9)Hex. 6 m2 : P62c
14.9.10BatisiteBaNaNaTi2(Si4O12)O2Orth.
14.9.11FresnoiteBa2Ti(Si2O7)OTet. 4mm : P4bm
14.9.12Joaquinite-(Ce)NaBa2Ce2FeTi2[Si4O12]2O2(OH,F) · H2OMon. 2 : B2
14.9.13Orthojoaquinite-(Ce)NaBa2Ce2FeTi2[Si4O12]2O2(O,OH) · H2OOrth.
14.9.14StrontiojoaquiniteSr2Ba2(Na,Fe)2Ti2[Si4O12]2O2(O,OH)2 · H2OMon.
14.9.15Bario-orthojoaquinite(Ba,Sr)4Fe2Ti2[Si4O12]2O2 · H2OOrth.
14.9.16Strontio-orthojoaquinite(Na,Fe)2Sr2Ba2Ti2[Si4O12]2O2(O,OH)2 · H2OOrth.
14.9.17BafertisiteBa2Fe2+4Ti2(Si2O7)2O2(OH)2F2Tric.
14.9.18HejtmaniteBa2(Mn2+,Fe2+)4Ti2(Si2O7)2O2(OH)2F2Tric. 1
14.9.19Delindeite(Na,K)2(Ba,Ca)2(Ti,Fe,Al)3(Si2O7)2O2(OH)2 · 2H2OMon.
14.9.20Barytolamprophyllite(Ba,Na)2(Na,Ti,Fe3+)4Ti2(Si2O7)2O(OH,F)Mon.
14.9.21Trimounsite-(Y)Y2Ti2(SiO4)O5Mon.
14.9.22Perrierite-(Ce)Ce4MgFe3+2Ti2(Si2O7)2O8Mon. 2/m : P21/b
14.9.23Chevkinite(Ce,Ca,Th)4(Fe,Mn)2(Ti,Fe)3[Si2O7]2O8
14.9.24Strontiochevkinite(Sr,La,Ce,Ca)4Fe2+(Ti,Zr)2Ti2(Si2O7)2O8Mon.
14.9.25TisinaliteNa3H3(Mn,Ca,Fe)TiSi6(O,OH)18 · 2H2OTrig.
14.9.26NeptuniteNa2KLiFe2+2Ti2Si8O24Mon. m : Bb
14.9.27ManganoneptuniteNa2KLiMn2+2Ti2Si8O24Mon.
14.9.28Kupletskite(K,Na)3(Mn,Fe)7Ti2Si8O26(OH)4FTric.
14.9.29AstrophylliteK2NaFe2+7Ti2Si8O26(OH)4FTric. 1 : P1
14.9.30Hydroastrophyllite(H3O,K,Ca)3(Fe,Mn)5-65Ti2Si8(O,OH)31Tric.
14.9.31LobanoviteK2Na(Fe2+4Mg2Na)Ti2(Si4O12)2O2(OH)4Mon. 2/m : B2/m
14.9.32BaratoviteKCa7(Ti,Zr)2Li3Si12O36F2Mon. 2/m : B2/b
14.9.34AenigmatiteNa4[Fe2+10Ti2]O4[Si12O36]Tric. 1 : P1
14.9.36TinaksiteK2Na(Ca,Mn2+)2TiO[Si7O18(OH)]Tric.
14.9.37Janhaugite(Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2Mon. 2/m : P21/m
14.9.38KoashviteNa6(Ca,Mn)(Ti,Fe)Si6O18 · H2OOrth.

Other InformationHide

Notes:
easily decomposed by the acid
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for SchorlomiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Shepard C U (1846) On three new mineral species from Arkansas, and the discovery of the diamond in North Carolina. American Journal of Science and Arts 52, 249-254
Howie, R.A., A.R. Wooley, J.H. Scoon, R.C. Tyler & J.N. Walsh (1968), The role of titanium and the effect of TiO2 on the cell size, refractive index, and specific gravity in the andradite-melanite-schorlomite series: Mineralogical Magazine: 36: 775-790.
Manning, P.G. & D.C. Harris (1970), Optical absorption and electron-microprobe studies of some high-Ti andradites: Canadian Mineralogist: 10: 260-271.
Huggins, F.E., D. Virgo & H.G. Huckenbolz (1977), Titanium-containing silicate garnets: II. The crystal chemistry of melanites and schorlomites: American Mineralogist: 62: 646-665.
Schwartz, K.B., Nolet, D.A., and Burns, R.G. (1980) Mössbauer spectroscopy and crystal chemistry of natural Fe-Ti garnets. American Mineralogist: 65: 142-153.
American Mineralogist (1989): 74: 422.
Canadian Mineralogist 33 (1995): 627-631.
Armbruster, Th., Birrer, J., Libowitzky, E., Beran, A. (1998): Crystal chemistry of Ti-bearing andradites, European Journal of Mineralogy, Vol. 10, 907-921
Chakhmouradian, A. R.; McCammon, C. A. (2005): Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Physics and Chemistry of Minerals 32, 277-289.

Internet Links for SchorlomiteHide

Localities for SchorlomiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Angola
 
  • Huambo Province
    • Londuimbali
Amores-Casals, S.; Gonçalves, A.O.; Melgarejo, J.-C.; Molist, J.M. (2020) Nb and REE Distribution in the Monte Verde Carbonatite–Alkaline–Agpaitic Complex (Angola). Minerals 10, 5.
  • Huíla Province
    • Quilengues
Amores-Casals, S., Melgarejo, J. C., Bambi, A., Gonçalves, A. O., Morais, E. A., Manuel, J., ... & Molist, J. M. (2019). Lamprophyre-Carbonatite Magma Mingling and Subsolidus Processes as Key Controls on Critical Element Concentration in Carbonatites—The Bonga Complex (Angola). Minerals, 9(10), 601.
Brazil
 
  • São Paulo
    • Cajati
MinRec 15:261-270
Cameroon
 
  • Southwest Region
    • Fako
      • Buea
Bindi, L., Bonazzi, P., Fitton, G.J. (2001): Crystal chemistry of strontian soda melilite from nephelinite lava of Mt. Etinde, Cameroon, European Journal of Mineralogy; February 2001; Vol. 13; p. 121-125 ; Bindi, L., Bonazzi, P., & Fitton, J. G. (2001). Crystal chemistry of strontian soda melilite from nephelinite lava of Mt. Etinde, Cameroon. European Journal of Mineralogy, 13(1), 121-125.
Canada
 
  • British Columbia
    • Golden Mining Division
Cavell, R. G. and Duke, M. J. M. (1995) Spectroscopy of the cation distribution in the schorlomite species of garnet. American Mineralogist: 80: 27-38.
Jones, W. C. (1955) Geology of the Garnet Mountain-Aguilla Ridge Area, Ice River, British Columbia. MSc thesis, University of British Columbia.
  • Newfoundland and Labrador
    • Labrador
Tappe, S., (2005) Genesis of Ultramafic Lamprophyres and Carbonatites, Aillik Bay, Canada: Implications for Incipient Rifting in the Labrador Sea Area. Nature and Origin of Ultramafic Lamprophyres and Carbonatites from the Borders of the Labrador Sea: Insights from Petrology, Geochemistry, and Geochronology. PhD thesis Johannes Gutenberg-Universität Mainz
  • Nunavut
    • Qikiqtaaluk Region
      • Ungava bay
        • Abloviak fjord
Tappe, S., Jenner, G. A., Foley, S. F., Heaman, L., Besserer, D., Kjarsgaard, B. A., & Ryan, B. (2004). Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos, 76(1), 491-518.
  • Ontario
    • Algoma District
      • McMurray Township
Sage (1988) Ont. Geol. Survey Study 47.
    • Thunder Bay District
      • Killala Lake Area
The Canadian Mineralogist Vol. 44, pp. 929-942 (2006)
  • Québec
    • Saguenay-Lac-Saint-Jean
      • Le Fjord-du-Saguenay RCM
        • Saint-Honoré
Currie (1976) GSC Bulletin 239, 109-110
FOURNIER, A. (1993) Magmat!c and hydrothermal controls of LREE mineralization of the St.-Honoré carbonatite, Québec. M.Sc. thesis, McGill University, Montreal, Canada. 95p.
Cape Verde
Kogarko, L. N., Sorokhtina, N. V., Zaitsev, V. A., & Senin, V. G. (2009). Rare metal mineralization of calcite carbonatites from the Cape Verde Archipelago. Geochemistry International, 47(6), 531-549.
China
 
  • Hebei
    • Baoding
      • Laiyuan County
Chang Zhaoshan and Feng Zhongyan (1996): Acta Scientiarum Naturalium Universitatis Pekinensis 32(6), 724-733.
    • Zhangjiakou
      • Zhuolu County
Baolei Mu, Junjun Cai, and Zhenhui Bian (1998): Acta Petrologica et Mineralogica 17(4), 359-370.
  • Shanxi
    • Lüliang
      • Xing County
        • Zijinshan Complex
Daogan Tai and Peiying Lin (1987): Geoscience 1(1), 86-94
Czech Republic
 
  • Karlovy Vary Region
    • Karlovy Vary District
      • Ostrov
Pfeiffer, L., Wenzel, T., & Eckstein, L. (1990). Neue Alterswerte vom Oberwiesenthaler Eruptivstock im Westerzgebirge und ihre geologischen Konsequenzen. Freib. Forsch-HC, 441, 115-119. Pivec, E., & Ulrych, J. (1982). Pseudoleucite from Loučná (Oberwiesenthal), Krušné Hory Mts.(Erzgebirge), Czechoslovakia. Neues Jahrbuch für Mineralogie Monatshefte, (5), 227-236. Schnabl, P., Novák, J. K., Cajz, V., Lang, M., Balogh, K., Pécskay, Z., ... & Ulrych, J. (2010). Magnetic properties of high-Ti basaltic rocks from the Krušné hory/Erzgebirge MTS.(Bohemia/Saxony), and their relation to mineral chemistry. Studia Geophysica et Geodaetica, 54(1), 77-94. Ulrych, J., Lloyd, F. E., Balogh, K., Hegner, E., Langrová, A., Lang, M., ... & Řanda, Z. (2005). Petrogenesis of alkali pyroxenite and ijolite xenoliths from the Tertiary Loučná–Oberwiesenthal Volcanic Centre, Bohemian Massif in the light of new mineralogical, geochemical, and isotopic data. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 182(1), 57-79.
Finland
 
  • North Ostrobothnia
    • Kuusamo
Chakhmouradian, A. R., & McCammon, C. A. (2005). Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Physics and Chemistry of Minerals, 32(4), 277-289.; Kramm, U. (1994). Isotope evidence for ijolite formation by fenitization: Sr− Nd data of ijolites from the type locality Iivaara, Finland. Contributions to Mineralogy and Petrology, 115(3), 279-286. Kramm, U., Kogarko, L. N., Kononova, V. A., & Vartiainen, H. (1993). The Kola Alkaline Province of the CIS and Finland: Precise Rb Sr ages define 380–360 Ma age range for all magmatism. Lithos, 30(1), 33-44.
Germany
 
  • Baden-Württemberg
Armbruster, Th., Birrer, J., Libowitzky, E., Beran, A. (1998): Crystal chemistry of Ti-bearing andradites, European Journal of Mineralogy, Vol. 10, 907-921
  • Lower Saxony
    • Goslar District
      • Bad Harzburg
        • Radau valley
No reference listed
  • Rhineland-Palatinate
    • Ahrweiler District
      • Brohltal
        • Wehr
Viereck, L., Geologische und petrologische Entwicklung des pleistozänen Vulkankomplexes Rieden, Ost-Eifel, Bochumer geol. Geotechn. Arbeiten 17, 1984
    • Mayen-Koblenz District
      • Mendig
        • Mendig
Viereck, L., Geologische und petrologische Entwicklung des pleistozänen Vulkankomplexes Rieden, Ost-Eifel, Bochumer geol. Geotechn. Arbeiten 17, 1984
      • Vordereifel
        • Ettringen
Blass, G., Graf, H.W., Kolitsch, U., Neue Funde und Mineralien aus der Vulkaneifel, Mineralien-Welt 13/1, 52-57, 2002
    • Vulkaneifel District
      • Gerolstein
        • Hillesheim
Hentschel, G., Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel, Lapis, Weise Verlag München, 09/1993
        • Rockeskyll
          • Rockeskyll volcanic complex
Riley, T., Bailey, K., lloyd, F.,, Extrusive carbonatite from the quaternary Rockeskyll complex, West Eifel, Germany, Canadian Mineralogist, Vol 34, 389-401, 1996
Greenland
 
  • Sermersooq
    • Kangerlussuaq Fjord
MinRec 16:485-494
    • Paamiut (Frederikshåb)
http://www.koeln.netsurf.de/~w.steffens/green.htm
Iraq
 
  • Sulaymaniyah Governorate
    • Qala-Diz (Qala-Dizeh; Qala-Diza)
      • Hero
Al-Hermezi, H. M., McKie, D., & Hall, A. J. (1986). Baghdadite, a new calcium zirconium silicate mineral from Iraq. Mineralogical Magazine, 50, 119-123.
Israel
 
  • Southern District (HaDarom District)
    • Tamar Regional Council
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P., Murashko, M. (2015): New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 1073-1087.
      • Hatrurim Basin
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P., Murashko, M. (2017): Gurimite, Ba3(VO4)2, and hexacelsian, BaAl2Si2O8 – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 1009-1019.
Krzątała, Arkadiusz & Panikorovskii, Taras & Galuskina, Irina & Galuskin, Evgeny. (2018). Dynamic Disorder of Fe3+ Ions in the Crystal Structure of Natural Barioferrite. Minerals. 8. 340. 10.3390/min8080340.
Italy
 
  • Basilicata
    • Potenza Province
      • Rionero in Vulture
Beccaluva, L., Coltorti, M., Di Girolamo, P., Melluso, L., Milani, L., Morra, V., & Siena, F. (2002). Petrogenesis and evolution of Mt. Vulture alkaline volcanism (Southern Italy). Mineralogy and Petrology, 74(2-4), 277-297. Bindi, L., Cellai, D., Melluso, L., Conticelli, S., Morra, V., & Menchetti, S. (1999). Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy. Lithos, 46(2), 259-274. De Astis, G., Kempton, P. D., Peccerillo, A., & Wu, T. W. (2006). Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy. Contributions to Mineralogy and Petrology, 151(3), 331-351. D'orazio, M., Innocenti, F., Tonarini, S., & Doglioni, C. (2007). Carbonatites in a subduction system: the Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos, 98(1-4), 313-334. Downes, H., Kostoula, T., Jones, A., Beard, A., Thirlwall, M., & Bodinier, J. L. (2002). Geochemistry and Sr–Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite–melilitite volcano, central southern Italy. Contributions to Mineralogy and Petrology, 144(1), 78-92. Jones, A. P., Kostoula, T., Stoppa, F., & Woolley, A. R. (2000). Petrography and mineral chemistry of mantle xenoliths in a carbonate-rich melilititic tuff from Mt. Vulture volcano, southern Italy. Mineralogical Magazine, 64(4), 593-613. La Volpe, L., Patella, D., Rapisardi, L., & Tramacere, A. (1984). The evolution of the Monte Vulture volcano (Southern Italy): inferences from volcanological, geological and deep dipole electrical soundings data. Journal of volcanology and geothermal research, 22(3-4), 147-162. Melluso, L., Morra, V., & Di Girolamo, P. (1996). The Mt. Vulture volcanic complex (Italy): evidence for distinct parental magmas and for residual melts with melilite. Mineralogy and Petrology, 56(3-4), 225-250. Rosatelli, G., Wall, F., & Stoppa, F. (2007). Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy). Lithos, 99(3-4), 229-248. Solovova, I. P., Girnis, A. V., Kogarko, L. N., Kononkova, N. N., Stoppa, F., & Rosatelli, G. (2005). Compositions of magmas and carbonate–silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy. Lithos, 85(1-4), 113-128. Stoppa, F., & Principe, C. (1997). Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture Southern Italy: The Monticchio Lakes Formation. Journal of volcanology and geothermal research, 78(3-4), 251-265. Stoppa, F., Jones, A.P. & Sharygin, V.V. 2009. Nyereite from carbonatite rocks at Vulture volcano; implications for mantle metasomatism and petrogenesis of alkali carbonate melts. Central European Journal of Geoscience, 1, 131-151. Villa, I. M., & Buettner, A. (2009). Chronostratigraphy of Monte Vulture volcano (southern Italy): secondary mineral microtextures and 39 Ar-40 Ar systematics. Bulletin of volcanology, 71(10), 1195.
  • Lazio
    • Rieti Province
      • Rieti
        • Santa Rufina
Stoppa, F., and Woolley, A.R. (1997): Mineralogy and Petrology 59, 43-67.; Conticelli, S., D’antonio, M., Pinarelli, L., & Civetta, L. (2002). Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology, 74(2-4), 189-222. Cundari, A., & Ferguson, A. K. (1991). Petrogenetic relationships between melilitite and lamproite. Contributions to Mineralogy and Petrology, 107(3), 343-357. Isakova, A. T., Panina, L. I., & Stoppa, F. (2017). Genesis of kalsilite melilitite at Cupaello, Central Italy: Evidence from melt inclusions. Petrology, 25(4), 433-447. Sabatini, V. (1903). La pirossenite melilitica di Coppaeli. Boll. R. Com. geol. Ital., 34, 376. Stoppa, F., & Cundari, A. (1995). A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance. Contributions to Mineralogy and Petrology, 122(3), 275-288. Villa, I., Serva, L., & Quercioli, C. (1991). Verso una datazione della lava di Cupaello (Rieti). Plinius, 4, 102-103.
  • Umbria
    • Perugia Province
      • Spoleto
Stoppa.F., Wolley A.R. and Bailey K. (2004). Extrusive carbonatites and their meaning: the case of Italy. 32nd International Geological Congress, Florence - Italy, August 20-28, 2004, pag. 7-8. L. Terrazzi Ed., Firenze, 2004
    • Terni Province
Lupini, L., Williams, C.T., Woolley, A.R. (1992): Zr-rich garnet and Zr- and Th-rich perovskite from the Polino carbonatite, Italy. Mineralogical Magazine, 56, 581-586; F. Stoppa and Y. Liu, Eur. J. Mineral. , 1995, 7, pp. 391-402.; Stoppa, F., & Lupini, L. (1993). Mineralogy and petrology of the Polino monticellite calciocarbonatite (Central Italy). Mineralogy and Petrology, 49(3-4), 213-231.; Conticelli, S., D’antonio, M., Pinarelli, L., & Civetta, L. (2002). Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology, 74(2-4), 189-222. Laurenzi, M., Stoppa, F., & Villa, I. (1994). Eventi ignei monogenici e depositi piroclastici nel Distretto Ultra-alcalino Umbro-Laziale (ULUD): revisione, aggiornamento e comparazione dei dati cronologici. Plinius, 12, 61-65. Lupini, L., Williams, C. T., & Woolley, A. R. (1992). Zr-rich garnet and Zr-and Th-rich perovskite from the Polino carbonatite, Italy. Mineralogical Magazine, 56(385), 581-586. Rosatelli, G., Wall, F., Stoppa, F., & Brilli, M. (2010). Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses. Contributions to Mineralogy and Petrology, 160(5), 645-661. Stoppa, F., & Lupini, L. (1993). Mineralogy and petrology of the Polino monticellite calciocarbonatite (Central Italy). Mineralogy and Petrology, 49(3-4), 213-231. Stoppa, F. & Villa, I. 1991. Prima dati cronologici del distretto ultra-alcalino umbro-laziale. Paper presented at the Riassunti Workshop. Evoluzione dei bacini neogenici e loro rapporti con il magmatismo Plio-Quaternario nell'area tosco-laziale, 12-13 June, Pisa, Italy.
Japan
 
  • Okayama Prefecture
    • Takahashi City
      • Bicchu-cho (Bitchu-cho)
        • Fuka
(= titanium-rich andradite)
Middle East
 
Vapnik, Y., Sokol, E., Murashko M., Sharygin V. (2006): The enigma of Hatrurim. Mineralogical Almanac, 10, 69-77.
Mongolia
 
  • Ömnögovi Province
    • Shara Hulasa Hiid
Pavel M. Kartashov data
Morocco
 
  • Béni Mellal-Khénifra Region
    • Khénifra Province
      • Tamazeght Mountain Range
  • Drâa-Tafilalet Region
    • Errachidia Province
various added photos
C Bracke collection
Norway
 
  • Telemark
    • Skien
Larsen, A.O. (1993): Gruver og skjerp i Skien. Stathelle 1993. 72p
Jamtveit B., Dahlgren S. and Austrheim H. (1997): High-grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway. American Mineralogist. 82 : 1241 - 1254
Russia
 
  • Irkutsk Oblast
L. Kogarko (1995) Alkaline Rocks and Carbonatites of the World: Part Two: Former USSR
P.M. Kartashov data
  • Krasnoyarsk Krai
    • Maimecha and Kotui Rivers Basin
Pavel M. Kartashov data
  • Murmansk Oblast
Chakhmouradian, A. R.; McCammon, C. A. (2005): Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Physics and Chemistry of Minerals 32, 277-289.
www.koeln.netsurf.de/~w.steffens/khib.htm
      • Kukisvumchorr Mt
Shlyukova Z.V. (1986) Mineralogy of contact formations of Khibina massif, - Moscow, Nauka, p. 96 (in Rus.)
    • Kolsky District
Kogarko, L.N. et al (1995) Alkaline Rocks and Carbonatites of the World Vol 2.
Verhulst, A., Balaganskaya, E., Kirnarsky, Y., & Demaiffe, D. (2000). Petrological and geochemical (trace elements and Sr–Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos, 51(1), 1-25.
    • Northern Karelia
www.koeln.netsurf.de/~w.steffens/vuori.htm
    • Turii Cape
www.koeln.netsurf.de/~w.steffens/tury.htm; Keith Bell, Elizabeth Ann Dunworth, Andrei G. Bulakh, and Valeriy V. Ivanikov (1996) Alkaline rocks of the Turiy Peninsula, Russia, including type-locality turjaite and turjite; a review. Can Mineral, v. 34, p. 265-280; Liferovich, R. P., Mitchell, R. H., Zozulya, D. R., & Shpachenko, A. K. (2006). Paragenesis and composition of banalsite, stronalsite, and their solid solution in nepheline syenite and ultramafic alkaline rocks. The Canadian Mineralogist, 44(4), 929-942.
[World of Stones 12:49]
    • Mirninsky District
Gałuskina, I.O., Gałuskin, E.V., Lazic, B., Armbruster, T., Dzierżanowski, P., Prusik, K., Wrzalik, R. (2010): Eringaite, Ca3Sc2(SiO4)3, a new mineral of the garnet group. Mineralogical Magazine, 74, 365-373.
  • Tuva
Doroshkevich, A. G., Veksler, I. V., Izbrodin, I. A., Ripp, G. S., Khromova, E. A., Posokhov, V. F., ... & Vladykin, N. V. (2016). Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: Implications for the sources of the parental magma and metasomatizing fluids. Journal of Asian Earth Sciences, 116, 81-96.
    • Sangilen Upland
http://webmineral.ru/deposits/item.php?id=234
South Africa
 
  • North West
    • Ngaka Modiri Molema District
VERWOERD, W.J. (1993) Update on carbonatites of South Africa and Namibia. South African Journal of Geology, 96(3), 75-95.
Sudan
 
  • Blue Nile
Ahmed Khidir Yagoub () Mineral Processing in Blue Nile. Scribd
Sweden
 
  • Västernorrland County
    • Sundsvall
Kresten, P. (1990): The Alnø area (in Swedish). In: Lundqvist, T. (Ed.), Beskrivning Till Bergrundskartan Over Västernorrlands län. Sveriges Geologiska Undersökning, serie Ba, 31, 238–278
UK
 
  • Scotland
    • Highland
      • Ardnamurchan
Peter G. Embrey (1978) Fourth Supplementary List of British Minerals. Mineralogical Magazine 42:169-177
USA (TL)
 
  • Arkansas
    • Hot Spring Co.
Shepard CU: Amer.J.Sci. 2nd ser.(1846) 2, 249-254; Chakhmouradian, A. R.; McCammon, C. A. (2005): Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Physics and Chemistry of Minerals 32, 277-289.; Rocks and Minerals, (1976) 51:495-507
Rocks and Minerals, (1988) 63:104-125
American Mineralogist, Volume 7 4, pages 113-131, 1989
Rocks and Minerals, (1976) 51:495-507
Rocks and Minerals, (1988) 63:104-125
  • California
    • Humboldt Co.
      • Coastal Range
Czamanske, G.K., B.F. Leonard & J.R. Clark (1980), Erdite, a new hydrated sodium iron sulfide mineral: American Mineralogist: 65: 508; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 495; American Mineralogist: (1983) 68: 245-254.
  • Colorado
    • Gunnison Co.
      • White Earth Mining District (Powderhorn Mining District)
"Minerals of Colorado, updated & revised", p. 17, by Eckel, Edwin B., 1997
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.8.4 12:46:57 Page generated: 2020.8.1 12:21:15
Go to top of page