登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Phosphoferrite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About PhosphoferriteHide

Formula:
(Fe2+,Mn2+)3(PO4)2 · 3H2O
Colour:
Colourless, pale green, reddish brown (altered); colourless to faintly tinted green in transmitted light.
Lustre:
Vitreous, Resinous
Hardness:
3 - 3½
Specific Gravity:
3 - 3.2
Crystal System:
Orthorhombic
Name:
In allusion to the composition, containing PHOSPHOrus and iron (Latin = FERRum).

Classification of PhosphoferriteHide

Approved, 'Grandfathered' (first described prior to 1959)
8.CC.05

8 : PHOSPHATES, ARSENATES, VANADATES
C : Phosphates without additional anions, with H2O
C : With only medium-sized cations, RO4:H2O = 1:1.5
40.3.2.1

40 : HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
3 : A3(XO4)2·xH2O
19.12.19

19 : Phosphates
12 : Phosphates of Mn

Physical Properties of PhosphoferriteHide

Vitreous, Resinous
Transparency:
Transparent, Translucent
Comment:
Lustre ranges to sub-resinous from vitreous.
Colour:
Colourless, pale green, reddish brown (altered); colourless to faintly tinted green in transmitted light.
Hardness:
3 - 3½ on Mohs scale
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
On {010}, poor.
Fracture:
Irregular/Uneven
Density:
3 - 3.2 g/cm3 (Measured)    

Optical Data of PhosphoferriteHide

Type:
Biaxial (+)
RI values:
nα = 1.672 nβ = 1.680 nγ = 1.700
2V:
Measured: 68° , Calculated: 66°
Max Birefringence:
δ = 0.028
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
High
Dispersion:
r > v strong

Chemical Properties of PhosphoferriteHide

Formula:
(Fe2+,Mn2+)3(PO4)2 · 3H2O
IMA Formula:
Fe2+3(PO4)2 · 3H2O

Crystallography of PhosphoferriteHide

Crystal System:
Orthorhombic
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Space Group:
Pmna
Cell Parameters:
a = 9.41 Å, b = 10.02 Å, c = 8.66 Å
Ratio:
a:b:c = 0.939 : 1 : 0.864
Unit Cell V:
816.54 ų (Calculated from Unit Cell)
Morphology:
Crystals octahedral with large {111}, or tabular {010}. The crystals frequently grow in parallel groupings. Massive, granular; coarsely fibrous.

Type Occurrence of PhosphoferriteHide

Synonyms of PhosphoferriteHide

Other Language Names for PhosphoferriteHide

Relationship of Phosphoferrite to other SpeciesHide

Other Members of this group:
CorreianevesiteFe2+Mn2+2(PO4)2 · 3H2OOrth. mmm (2/m 2/m 2/m)
Garyansellite(Mg,Fe)3(PO4)2(OH,O) · 1.5H2OOrth. mmm (2/m 2/m 2/m)
Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3Orth.
LandesiteMn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2OOrth.
Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2OOrth. mmm (2/m 2/m 2/m) : Pmna
Forms a series with:

Common AssociatesHide

Associated Minerals Based on Photo Data:
11 photos of Phosphoferrite associated with LudlamiteFe2+3(PO4)2 · 4H2O
3 photos of Phosphoferrite associated with VivianiteFe2+3(PO4)2 · 8H2O
2 photos of Phosphoferrite associated with PerloffiteBa(Mn2+,Fe2+)2Fe3+2(PO4)3(OH)3
1 photo of Phosphoferrite associated with Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
1 photo of Phosphoferrite associated with TripliteMn2+2(PO4)F
1 photo of Phosphoferrite associated with Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O

Related Minerals - Nickel-Strunz GroupingHide

8.CC.05Garyansellite(Mg,Fe)3(PO4)2(OH,O) · 1.5H2OOrth. mmm (2/m 2/m 2/m)
8.CC.05Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3Orth.
8.CC.05LandesiteMn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2OOrth.
8.CC.05Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2OOrth. mmm (2/m 2/m 2/m) : Pmna
8.CC.10KaatialaiteFe(H2AsO4)3 · 5H2OMon. 2/m
8.CC.15LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2OMon. 2/m : B2/b

Related Minerals - Dana Grouping (8th Ed.)Hide

40.3.2.2Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3Orth.
40.3.2.3Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2OOrth. mmm (2/m 2/m 2/m) : Pmna
40.3.2.4LandesiteMn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2OOrth.
40.3.2.5Garyansellite(Mg,Fe)3(PO4)2(OH,O) · 1.5H2OOrth. mmm (2/m 2/m 2/m)

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

19.12.1MetaswitzeriteMn2+3(PO4)2 · 4H2OMon. 2/m : P2/b
19.12.2BermaniteMn2+Mn3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P2/b
19.12.3NatrophiliteNaMn2+PO4Orth. mmm (2/m 2/m 2/m) : Pmna
19.12.4SidorenkiteNa3Mn2+(CO3)(PO4)Mon.
19.12.5Niahite(NH4)(Mn2+,Mg)(PO4) · H2OOrth. mm2 : Pmn21
19.12.6RobertsiteCa2Mn3+3(PO4)3O2 · 3H2OMon. m : Bb
19.12.7PararobertsiteCa2Mn3+3(PO4)3O2 · 3H2OMon. 2/m : P21/b
19.12.8SinkankasiteMn2+Al(PO3OH)2(OH) · 6H2OTric.
19.12.9MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2OTric.
19.12.10Heterosite(Fe3+,Mn3+)PO4Orth. mmm (2/m 2/m 2/m) : Pmna
19.12.11PurpuriteMn3+(PO4)Orth. mmm (2/m 2/m 2/m) : Pmna
19.12.12Wolfeite(Fe2+,Mn2+)2(PO4)(OH)Mon. 2/m : P21/b
19.12.13Triploidite(Mn2+,Fe2+)2(PO4)(OH)Mon. 2/m : P2/b
19.12.14LipscombiteFe2+Fe3+2(PO4)2(OH)2Tet.
19.12.15FrondeliteMn2+Fe3+4(PO4)3(OH)5Orth. 2 2 2 : C2 2 21
19.12.16RockbridgeiteFe2+Fe3+4(PO4)3(OH)5Orth. mmm (2/m 2/m 2/m)
19.12.17Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3Orth.
19.12.18LandesiteMn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2OOrth.
19.12.20Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2OOrth. mmm (2/m 2/m 2/m) : Pmna
19.12.21EarlshannoniteMn2+Fe3+2(PO4)2(OH)2 · 4H2OMon.
19.12.22Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2OMon. 2/m : B2/b
19.12.23SwitzeriteMn2+3(PO4)2 · 7H2OMon.
19.12.24LaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
19.12.25PseudolaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OMon. 2/m : P21/b
19.12.26StrunziteMn2+Fe3+2(PO4)2(OH)2 · 6H2OTric. 1 : P1
19.12.27StewartiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
19.12.28Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3Mon.
19.12.29Ferroalluaudite(Na,Ca)Fe2+(Fe3+,Mn2+,Fe2+)2(PO4)3Mon. 2/m : B2/b
19.12.30Fillowite{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36Trig. 3 : R3
19.12.31JohnsomervilleiteNa10Ca6Mg18Fe25(PO4)36Trig.
19.12.32WicksiteNaCa2(Fe2+,Mn2+)4MgFe3+(PO4)6 · 2H2OOrth. mmm (2/m 2/m 2/m)
19.12.33Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2Mon. 2/m : B2/b
19.12.34Sarcopside(Fe2+,Mn2+,Mg)3(PO4)2Mon. 2/m : P21/b
19.12.35LudlamiteFe2+3(PO4)2 · 4H2OMon. 2/m : P21/b
19.12.36GraftoniteFe2+Fe2+2(PO4)2Mon. 2/m : P21/b
19.12.37WilhelmvierlingiteCaMnFe3+(PO4)2(OH) · 2H2OOrth.
19.12.38FairfielditeCa2Mn2+(PO4)2 · 2H2OTric. 1 : P1
19.12.39BeusiteMn2+Mn2+2 (PO4)2Mon.
19.12.40MesseliteCa2Fe2+(PO4)2 · 2H2OTric. 1 : P1
19.12.41Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2OMon. 2/m : P2/b
19.12.42Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn2+2}{Fe3+2}(PO4)4(OH)2 · 8H2OMon. 2/m : P2/b
19.12.43Jahnsite-(CaMnMg){Ca}{Mn2+}{(Mg,Fe2+)2}{Fe3+2}(PO4)4(OH)2 · 8H2OMon. 2/m : P2/b
19.12.44KeckiteCaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2OMon. 2/m : P2/b
19.12.45StanfielditeCa4Mg5(PO4)6Mon.
19.12.46Laubmannite(Fe2+,Mn2+,Ca)3Fe3+6(PO4)4(OH)12
19.12.47ZodaciteCa4Mn2+Fe3+4(PO4)6(OH)4 · 12H2OMon.
19.12.48HagendorfiteNaCaMn2+Fe2+2(PO4)3Mon. 2/m : B2/b
19.12.49Maghagendorfite(□,Na,)(Na,Ca,Fe2+)Mn(Mg,Fe2+,Fe3+)3(PO4)3Mon.
19.12.50VaruliteNaCaMn2+Mn2+2(PO4)3Mon. 2/m : B2/b
19.12.51GriphiteNa4Li2Ca6(Mn2+,Fe2+,Mg)19Al8(PO4)24(F,OH)8Iso. m3 (2/m 3) : Pa3
19.12.52Attakolite(Ca,Sr)Mn(Al,Fe)4(HPO4,PO4)3(SiO4,PO4)(OH)4Mon. 2/m : B2/m
19.12.53Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2Mon.
19.12.54Lun'okite(Mn,Ca)(Mg,Fe,Mn)Al(PO4)2OH · 4H2OOrth. mmm (2/m 2/m 2/m) : Pbca
19.12.55EosphoriteMn2+Al(PO4)(OH)2 · H2OOrth. mmm (2/m 2/m 2/m) : Cmca
19.12.56Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2OMon.
19.12.57ChildreniteFe2+Al(PO4)(OH)2 · H2OOrth. mm2 : Ccc2
19.12.58BobfergusoniteNa2Mn5FeAl(PO4)6Mon. 2/m : P2/b
19.12.59QingheiiteNaMn3+Mg(Al,Fe3+)(PO4)3Mon. 2/m : P21/b
19.12.60Whiteite-(CaFeMg){Ca}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2OMon. 2/m : P21/b
19.12.61Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2OMon. 2/m
19.12.62Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2OMon. 2/m : P21/b
19.12.63Rittmannite{(Mn2+,Ca)}{Mn2+}{(Fe2+,Mn2+,Mg)2}{(Al,Fe3+)2}(PO4)4(OH)2 · 8H2OMon.
19.12.64ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2OMon. 2/m : B2/b
19.12.65Samuelsonite(Ca,Ba)Ca8Fe2+2Mn2+2Al2(PO4)10(OH)2Mon. 2/m : B2/m

Other InformationHide

Notes:
Soluble in acids.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for PhosphoferriteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Laubmann and Steinmetz (1920) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 55: 569.
Steinmetz (1926) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 64: 405 (as Reddingite).
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 727-729.
Moore, P.B. (1971): The Fe2+3(H2O)n(PO4)2 homologous series: crystal-chemical relations and oxidized equivalents. American Mineralogist 56, 1-17.
Moore, P.B. (1974): Complete mixed valence solid solution series in Fe32+(H20)3(PO4)2 (phosphoferrite) Fe33+(OH)3(PO4)2 (kryzhanovskite). Nature 251, 305-306.
Moore, P.B.; Araki, T. (1976): Mixed-valence solid-solution series. Crystal structures of phosphoferrite, Fe32+(H2O)3[PO4]2, and kryzhanovskite, Fe33+(OH)3[PO4]2. Inorganic Chemistry 15, 316-321.
Mineralogical Magazine (1980): 43: 789-795.

Internet Links for PhosphoferriteHide

Localities for PhosphoferriteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Argentina
 
  • San Luis Province
    • San Martín department
      • Las Aguadas
Roda-Robles, E., Galliski, M. A., Roquet, M. B., Hatert, F., & de Paeseval, P. (2012). Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis province, Argentina: Paragenesis, composition and significance. The Canadian Mineralogist, 50(4), 913-931.
Australia
 
  • South Australia
    • Flinders Ranges
      • South Flinders Ranges
        • Martins Well
  • Victoria
    • East Gippsland Shire
      • Omeo
Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
          • Dorchap Dyke Swarm
Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Brazil
 
  • Minas Gerais
    • Conselheiro Pena
Canadian Mlneralogist Vol. 20, pp. 87-89 (1982)
    • Divino das Laranjeiras
[MinRec 20:394]
    • Galiléia
      • Laranjeiras
[MInRec 12:71]
China
 
  • Fujian
    • Nanping
      • Yanping District
        • Nanping pegmatite field (Xikeng pegmatite field)
Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
France
 
  • Nouvelle-Aquitaine
    • Creuse
      • Crozant
FONTAN F (1976) Les phosphates des pegmatites de la région de Crozant. Bulleti de la société française de minéralogie et de cristallographie 99 p 318-321
  • Occitanie
    • Ariège
      • Auzat
Inventaire Minéralogique de la France Ariège T.2 éditions BRGM
Germany (TL)
 
  • Bavaria
    • Lower Bavaria
      • Regen
        • Zwiesel
          • Rabenstein
Wittern: "Mineralfundorte in Deutschland", 2001
    • Upper Palatinate
      • Neustadt an der Waldnaab
        • Pleystein
DILL, H.G., MELCHER, F., GERDES, A. and WEBER, B. (2008): The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE-Zn phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Canadian Mineralogist 46, 1131-1157.; Dill, H. G., Melcher, F., Gerdes, A., & Weber, B. (2008). The origin and zoning of hypogene and supergene Fe–Mn–Mg–Sc–U–REE phosphate mineralization from the newly discovered Trutzhofmühle aplite, Hagendorf pegmatite province, Germany. The Canadian Mineralogist, 46(5), 1131-1157.
        • Waidhaus
Dill, H. G., Škoda, R., & Weber, B. (2011). Preliminary results of a newly-discovered lazulite–scorzalite pegmatite–aplite in the Hagendorf-Pleystein Pegmatite Province, SE Germany. Asociación Geológica Argentina, Serie D, Publicación Especial, (14), 79-81.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 729; Weiss: "Mineralfundstellen, Deutschland West", Weise (Munich), 1990; Laubmann, H. & Steinmetz, H.: Z. Krist.55, 1920, 523: "Phosphatführenbde Pegmatite des Oberpfälzer und Bayrischen Waldes.; Dill H.G.: "Mineralogical and chemical composition of the Hagendorf-North Pegmatite, SE Germany - a monographic study", J. Min. Geochem, 2013
Min Mag 43 (1980),789; http://www.berthold-weber.de/h_miner.htm
  • North Rhine-Westphalia
    • Arnsberg
      • Siegen-Wittgenstein
        • Siegen
          • Eiserfeld
Dana 7:II:770.
Italy
 
  • Lombardy
    • Lecco Province
      • Colico
VIGNOLA, P., & DIELLA, V. (2007). Phosphates from Piona granitic pegmatites (Central Southern Alps, Italy). Granitic Pegmatites: the State of the Art. Book of Abstr.(T. Martins & R. Vieira, eds.). Universidade do Porto, Departamento de Geologia, Memórias, 8, 102-103.
  • Sardinia
    • Carbonia-Iglesias Province
      • Gonnesa
Dana 7:II:771.
  • Trentino-Alto Adige
    • Trento Province (Trentino)
      • Rabbi
        • Ceresè
Vignola, P., Zucali, M., Rotiroti, N., Marotta, G., Risplendente, A., Pavese, A., ... & Bertoldi, G. (2018). The Chrysoberyl-and Phosphate-Bearing Albite Pegmatite of Malga Garbella, Val Di Rabbi, Trento Province, Italy. The Canadian Mineralogist, 56(4), 411-424.
Poland
 
  • Lower Silesian Voivodeship
Pieczka A., Łobos K., Sachanbiński M. 2004: The first occurence of elbaite in Poland. Mineralogia Polonica, vol. 35, 3-14
    • Świdnica County
      • Gmina Świdnica
Włodek, A., Grochowina, A., Gołębiowska, B., Pieczka, A. (2015): A phosphate-bearing pegmatite from Lutomia and its relationships to other pegmatites of the Góry Sowie Block, southwestern Poland. Journal of Geosciences: 60: 45-72
Łodziński M. & Sitarz M. 2008: Chemical and Spectroscopic Characterization of Some Phosphates Accessory Minerals from Pegmatites of the Sowie Mts (Owles Mts), SW Poland. EUCMOS, Spectroscopy Applied to Archaeology, Arts, Geology and Mineralogy, p. 278
Pieczka, A., Włodek, A., Gołębiowska, B., Szełęg, E., Szuszkiewicz, A., Ilnicki, S., Nejbert, K., Turniak, K. (2015): Phosphate-bearing pegmatites in the Góry Sowie Block and adjacent areas, Sudetes, SW Poland. 7th International Symposium on Granitic Pegmatites, PEG 2015 Książ, Poland. Abstracts: 77-78; Pieczka, A., Hawthorne, F.C., Gołębiowska, B., Włodek, A., Grochowina, A. (2016): Maneckiite, ideally NaCa2Fe2+2(Fe3+Mg)Mn2(PO4)6(H2O)2, a new phosphate mineral of the wicksite supergroup from the Michałkowa pegmatite, Góry Sowie block, southwestern Poland. Mineralogical Magazine: 80: (in press
Portugal
 
  • Vila Real
Martins, T., Lima, A., Simmons, W.B. Falster, A.U. & Noronha, F. (2011): Geochemical fractionation of Nb-Ta oxides in Li-bearing pegmatites from the Barroso-Alvão pegmatite field, Northern Portugal. Canadian Mineralogist. 49, 777-791
    • Chaves
      • Vidago
Neiva, A. M. R., Silva, M. M. V. G., Antunes, I. M. H. R., & Ramos, J. M. F. (2000). Phosphate minerals of some granitic rocks associated quartz veins from northern and central Portugal.
  • Viseu
    • Mangualde
      • Chãs de Tavares
Pedro Alves collection. Characterized by p-XRD
USA
 
  • Maine
    • Oxford County
      • Greenwood
        • Uncle Tom Mountain
Mineral News (1995) 11:2 pp1,2,5; Falster, A. U., Simmons, W. B., Webber, K. L., Dallaire, D. A., Nizamoff, J. W., & Sprague, R. A. (2019). The Emmons Pegmatite, Greenwood, Oxford County, Maine. Rocks & Minerals, 94(6), 498-519.
  • New Hampshire
    • Grafton Co.
      • Groton
Mineralogical Record (1973) 4:103-130
  • South Dakota
    • Custer Co.
      • Custer Mining District
        • Custer
Rocks & Min.:60:117.
        • Fourmile
Mineralogical Record: 17: 245; Mineralogical Record: 17: 251; Rocks & Minerals: 60: 117.
    • Pennington Co.
      • Keystone Mining District
        • Glendale
Rocks & Minerals: 60: 116.
        • Keystone
R&M 75:3 pp 156-169
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.2.23 06:13:54 Page generated: 2020.2.22 09:43:04
Go to top of page