登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Magnesiocopiapite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About MagnesiocopiapiteHide

Formula:
MgFe3+4(SO4)6(OH)2 · 20H2O
Hardness:
2½ - 3
Crystal System:
Triclinic
Member of:
Name:
In allusion to its composition with dominant MAGNESIum and its relationship to COPIAPITE.

Classification of MagnesiocopiapiteHide

Approved, 'Grandfathered' (first described prior to 1959)
7.DB.35

7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
D : Sulfates (selenates, etc.) with additional anions, with H2O
B : With only medium-sized cations; insular octahedra and finite units
31.10.5.2

31 : HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
10 : Miscellaneous

Physical Properties of MagnesiocopiapiteHide

Hardness:
2½ - 3 on Mohs scale

Chemical Properties of MagnesiocopiapiteHide

Formula:
MgFe3+4(SO4)6(OH)2 · 20H2O

Crystallography of MagnesiocopiapiteHide

Crystal System:
Triclinic
Class (H-M):
1 - Pinacoidal
Space Group:
P1
Cell Parameters:
a = 7.3451(4) Å, b = 18.794(1) Å, c = 7.3891(4) Å
α = 91.369(5)°, β = 102.169(4)°, γ = 98.831(4)°
Ratio:
a:b:c = 0.391 : 1 : 0.393
Unit Cell V:
983.6 ų
Comment:
Synthetic (Majzlan & Michallik, 2007).

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
18.57 Å(90)
9.29 Å(100)
6.192 Å(45)
5.600 Å(80)
4.208 Å(40)
3.588 Å(50)
3.506 Å(40)
Comments:
Sample from Knoxville, California, USA.

Type Occurrence of MagnesiocopiapiteHide

Other Language Names for MagnesiocopiapiteHide

Relationship of Magnesiocopiapite to other SpeciesHide

Member of:
Other Members of this group:
AluminocopiapiteAl2/3Fe3+4(SO4)6(OH)2 · 20H2OTric. 1 : P1
CalciocopiapiteCaFe4(SO4)6(OH)2 · 10H2OTric. 1 : P1
CopiapiteFe2+Fe3+4(SO4)6(OH)2 · 20H2OTric. 1 : P1
CuprocopiapiteCuFe4(SO4)6(OH)2 · 20H2OTric. 1 : P1
FerricopiapiteFe5(SO4)6O(OH) · 20H2OTric. 1 : P1
ZincocopiapiteZnFe3+4(SO4)6(OH)2 · 18H2OTric.

Common AssociatesHide

Associated Minerals Based on Photo Data:
4 photos of Magnesiocopiapite associated with FibroferriteFe3+(SO4)(OH) · 5H2O
3 photos of Magnesiocopiapite associated with PickeringiteMgAl2(SO4)4 · 22H2O
2 photos of Magnesiocopiapite associated with RömeriteFe2+Fe3+2(SO4)4 · 14H2O
1 photo of Magnesiocopiapite associated with GuilditeCuFe3+(SO4)2(OH) · 4H2O
1 photo of Magnesiocopiapite associated with RansomiteCuFe2(SO4)4 · 6H2O
1 photo of Magnesiocopiapite associated with ApjohniteMn2+Al2(SO4)4 · 22H2O
1 photo of Magnesiocopiapite associated with AluminocopiapiteAl2/3Fe3+4(SO4)6(OH)2 · 20H2O

Related Minerals - Nickel-Strunz GroupingHide

7.DB.05AubertiteCuAl(SO4)2Cl · 14H2OTric. 1
7.DB.05Magnesioaubertite(Mg,Cu)Al(SO4)2Cl · 14H2O
7.DB.05Svyazhinite(Mg,Mn2+,Ca)(Al,Fe3+)(SO4)2F · 14H2OTric.
7.DB.10KhademiteAl(SO4)F · 5H2OOrth. mmm (2/m 2/m 2/m)
7.DB.10RostiteAl(SO4)(OH) · 5H2OOrth. mmm (2/m 2/m 2/m)
7.DB.15JurbaniteAl(SO4)(OH) · 5H2OMon.
7.DB.20Minasragrite(V4+O)(SO4) · 5H2OMon. 2/m
7.DB.20Orthominasragrite(V4+O)(SO4) · 5H2OOrth. mm2 : Pmn21
7.DB.20Anorthominasragrite(V4+O)(SO4) · 5H2OTric. 1 : P1
7.DB.25Bobjonesite(V4+O)(SO4) · 3H2OMon. 2/m
7.DB.30AmarantiteFe3+2(SO4)2O · 7H2OTric. 1
7.DB.30HohmanniteFe3+2(SO4)2O · 8H2OTric. 1
7.DB.30MetahohmanniteFe3+2(SO4)2O · 4H2OTric. 1 : P1
7.DB.35AluminocopiapiteAl2/3Fe3+4(SO4)6(OH)2 · 20H2OTric. 1 : P1
7.DB.35CalciocopiapiteCaFe4(SO4)6(OH)2 · 10H2OTric. 1 : P1
7.DB.35CopiapiteFe2+Fe3+4(SO4)6(OH)2 · 20H2OTric. 1 : P1
7.DB.35CuprocopiapiteCuFe4(SO4)6(OH)2 · 20H2OTric. 1 : P1
7.DB.35FerricopiapiteFe5(SO4)6O(OH) · 20H2OTric. 1 : P1
7.DB.35ZincocopiapiteZnFe3+4(SO4)6(OH)2 · 18H2OTric.

Related Minerals - Dana Grouping (8th Ed.)Hide

31.10.5.1CopiapiteFe2+Fe3+4(SO4)6(OH)2 · 20H2OTric. 1 : P1
31.10.5.3CuprocopiapiteCuFe4(SO4)6(OH)2 · 20H2OTric. 1 : P1
31.10.5.4FerricopiapiteFe5(SO4)6O(OH) · 20H2OTric. 1 : P1
31.10.5.5CalciocopiapiteCaFe4(SO4)6(OH)2 · 10H2OTric. 1 : P1
31.10.5.6ZincocopiapiteZnFe3+4(SO4)6(OH)2 · 18H2OTric.
31.10.5.7AluminocopiapiteAl2/3Fe3+4(SO4)6(OH)2 · 20H2OTric. 1 : P1

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for MagnesiocopiapiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Berry (1938) American Mineralogist: 23, pt. 2(12): 3.
American Mineralogist (1939): 24: 182.
University of Toronto Stud., Geol. Series, no. 51 (1947): 21.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 623.
Canadian Mineralogist (1985): 23: 55.
Majzlan, J., Kiefer, B. (2006): An X-ray and neutron-diffraction study of synthetic ferricopiapite, Fe14/3(SO4)6(OD,OH)2(D2O,H2O)20, and ab initio calculations on the structure of magnesiocopiapite, MgFe4(SO4)6(OH)2(H2O)20. Canadian Mineralogist, 44, 1227-1237.
Majzlan, J. & Michallik, R. (2007): The crystal structures, solid solutions, and infrared spectra of copiapite-group minerals. Mineralogical Magazine 71, 553-569.

Internet Links for MagnesiocopiapiteHide

Localities for MagnesiocopiapiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Australia
 
  • New South Wales
    • Murchison Co.
      • Upper Bingara
        • Gulf Creek
Ashley, P.M., Lottermoser, B.G. (1999) Geochemical, mineralogical and biogeochemical characterisation of abandoned metalliferous mine sites, Southern New England Orogen. In Flood, P.G. (ed.) Regional Geology, tectonics and metallogenesis, New England Orogen, 1-3 Forum, 1999, Department of Earth Science, U.N.E. Australia, 409-417.
Austria
 
  • Lower Austria
    • Horn District
      • Drosendorf-Zissersdorf
        • Wollmersdorf (Zettlitz-Wollmersdorf)
Taucher, J. (1993): Halotrichit, Aluminocopiapit, Magnesiocopiapit, Szomolnokit, Alunogen, Gips und Calcit aus dem aufgelassenen Graphitbergbau bei Zettlitz, nahe Wollmersdorf bei Eibenstein, Niederösterreich, Österreich. Matrixx - Mineralogische Nachrichten aus Österreich, 2, 47-51; Götzinger, M. A., Beran, A. & Libowitzky, E. (1994): Exkursion A: Mineralvorkommen und Lagerstätten im östlichen Waldviertel. Mitt. Österr. Mineral. Ges. 139, 389-405.; Kolitsch, U. (2017): 2045) Melanterit, Pickeringit und Rozenit vom ehemaligen Graphitbergbau Zettlitz bei Drosendorf, Waldviertel, Niederösterreich. Pp. 263-264 in Walter, F. et al. (2017): Neue Mineralfunde aus Österreich LXVI. Carinthia II, 207./127., 217-284.
    • Krems-Land District
      • Mühldorf
        • Amstall
Kolitsch, U. (2017): 2037) Magnesiocopiapit aus dem ehemaligen Graphitabbau Amstall, Niederösterreich. P. 256 in Walter, F. et al. (2017): Neue Mineralfunde aus Österreich LXVI. Carinthia II, 207./127., 217-284.
  • Styria
    • Leoben District
Meixner, H. (1954): Neue Mineralfunde in den österreichischen Ostalpen XIII.- Carinthia II, 144./64., 18-29.
Bolivia
 
  • Oruro
    • Cercado Province
      • Oruro City
Moricz, F., Walder, I. F., & Madai, F. (2009). Geochemical and mineralogical characterization of waste material from Itos Sn-Ag deposit, Bolivia. Proceeding of securing the future and 8th ICARD. Skellefteå, Sweden, 525-534.
Bulgaria
 
  • Montana Province
    • Chiprovtsi Obshtina
Dimitrova, D.; Mladenova, V.; Hecht, L. (2020) Efflorescent Sulfate Crystallization on Fractured and Polished Colloform Pyrite Surfaces: A Migration Pathway of Trace Elements. Minerals10, 12.
Canada
 
  • Nova Scotia
    • Cape Breton Co.
      • Sydney coalfield
        • Point Aconi
Zodrow, E.L. (1980) Hydrated Sulfates from Sydney Coalfield, Cape Breton Island, Nova Scotia, Canada: The Copiapite Group. American Mineralogist: 65: 961-967.
Chile
 
  • Antofagasta
    • Antofagasta Province
      • Mejillones
        • Mejillones peninsula
SEM-EDS by Joy Desor
G. Möhn & J. Desor
SEM-EDS by Igor V. Pekov
    • El Loa Province
      • Calama
        • Cerritos Bayos
samples analysed by Gerhard Moehn and Joy Desor
China
 
  • Inner Mongolia
    • Xilingol League (Xilinguole Prefecture)
      • Xilinhot City (Xilinhaote Co.)
        • Shengli coal field
Yao, C.; Zhuang, X.; Querol, X.; Li, J.; Li, B.; Moreno, N.; Zhang, F. (2020) New Data and Evidence on the Mineralogy and Geochemistry of Wulantuga High-Ge Coal Deposit of Shengli Coalfield, Inner Mongolia, China. Minerals 10, 17.
  • Xinjiang
    • Tulufan Prefecture (Turfan Prefecture; Turpan Prefecture)
      • Shanshan Co. (Piqan Co.; Pichan Co.)
        • Kanggur-Xifengshan gold belt
Kaiyin Bai and Zhaoxin Han (2007): Northwestern Geology 40(2), 114-117
Costa Rica
 
  • Alajuela Province
Rodríguez, A., & van Bergen, M. J. (2017). Superficial alteration mineralogy in active volcanic systems: An example of Poás volcano, Costa Rica. Journal of Volcanology and Geothermal Research, 346, 54-80.
  • Cartago Province
    • Irazú Volcano
Ulloa, A., Gázquez, F., Sanz Arranz, A., Medina García, J., Rull Pérez, F., Calaforra, J. M., ... & De Waele, J. (2018). Extremely high diversity of sulfate minerals in caves of the Irazú Volcano (Costa Rica) related to crater lake and fumarolic activity.
Czech Republic
 
  • Central Bohemian Region
Rost (1937); Zacek, V., Oplustil, S., Mayova, A. & Meyer, F. R. (1995): Die Mineralien von Kladno in Mittelböhmen, Tschechische Republik. Mineralien-Welt 6 (1), 13-30 (in German).
      • Libušin
Hyrsl J., Korbel P.; Tschechien & Slowakei, Mineralien und Fundstellen. Bode Verlag, 2008. Page 268-273
  • Hradec Králové Region
    • Trutnov District
      • Radvanice
Jirásek, J.: Thermal Changes of the Rocks in the Dump Pile of the Kateřina Colliery in Radvanice (Eastern Bohemia). Ostrava: VSB – Technical University of Ostrava, Institute of Geological Engineering - 541, 2001. 69 p.
  • Moravian-Silesian Region
    • Karviná District
Matýsek D., Jirásek J., Osovský M., Skupien P.. Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 2014, 78, 5, 1265-1286.
      • Orlová
Matýsek D., Jirásek J., Osovský M., Skupien P.. Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 2014, 78, 5, 1265-1286.
        • Lazy Mine
Matýsek D., Jirásek J., Osovský M., Skupien P.. Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 2014, 78, 5, 1265-1286.
  • South Moravian Region
    • Brno-Country District
      • Oslavany
Hršelová, P., Cempírek, J., Houzar, S., Sejkora, J. (2013): S,F,Cl-rich mineral assemblages from burned spoil heaps in the Rosice-Oslavany coalfield, Czech Republic. Can. Mineral.: 51(1): 171-188
France
 
  • Corsica
    • Haute-Corse
      • Corte
        • Venaco
Lheur, C., Meisser,N., Pecorini, R. and Steinmetz, A. (2011): Nouveautés minéralogiques en Corse. La Régne Minéral. 102: 33-40
  • Occitanie
    • Gard
      • Saint-Laurent-le-Minier
Minéralogie de la mine des malines (Daniel Gol, Alain Martaud, Nicolas Meisser, Pascal Chollet) - Le regne minéral, H.S. XVI, pp 49-86.
- Gol, D, Martaud, A., Meisser, N. & Chollet, P. (2010): Minéralogie des Malines, Gard. Le Règne Minéral, HS XVI, 49-88.
  • Provence-Alpes-Côte d'Azur
    • Hautes-Alpes
      • La Chapelle-en-Valgaudemar (La Chapelle-en-Valgaudémar)
Bourgoin, V., Favreau, G., Boulliard, J.-C. (2011): Jas Roux: un gisement exceptionnel à minéraux de thallium. Le Cahier des Micromonteurs, 3-2011, 2-91.
Germany
 
  • Saxony
    • Bautzen District
      • Oßling
Nasdala, L., Pietzsch, C., Ullrich, B. (1992): Magnesiocopiapit von Oßling/Lausitz, Der Aufschluss, Vol. 43, 249-256
      • Wittichenau
Wittern: "Mineralfundorte in Deutschland", 2001
  • Thuringia
    • Gera
      • Ronneburg U deposit
T. Witzke & F. Rüger: Lapis 1998(7/8), 26-64
Greece
 
  • Attica
    • East Attica
      • Lavreotiki
        • Lavrion District Mines
          • Plaka
            • Plaka Mines
Möckel, S. (2001): Wallkilldellit und weitere acht Neubestimmungen aus Lavrion, Griechenland. Lapis 26 (11), 43.; Schnorrer, G. & Breitenbach, H. (1996): Lavrion: Neufunde aus dem antiken Bergbau und in historischen Schlacken. Lapis, 21 (1), 45-48; 62.
Branko Rieck Collection
          • Sounion area
            • Sounion Mines
Branko Rieck Collection
Branko Rieck Collection
Hungary
 
  • Baranya County
    • Pécs
Lovász A., Szabó D. (2014): A pécs-vasasi égő széntelepeken képződő ásványok, TDK-dolgozat, kézirat, ELTE
  • Borsod-Abaúj-Zemplén County
    • Kazincbarcika District
      • Rudabánya
Szakáll: Minerals of Rudabánya, 2001
Sánoor Szakáll, Mária Foldvári, Gábor Papp, Péter Kovács-pálffy, Árpád Kovács (1997) Secondary Sulphate Minerals From Hungary. Acta Mineralogica-petrographica, Szeged, Xxxviii, Supplementum, 7-63.
  • Nógrád County
Geoda - Journal of the Hungarian Friends of Minerals, 2007 august.
Iran
 
  • Kerman Province
    • Rafsanjan County
      • Pariz
Khorasanipour, M., Tangestani, M. H., Naseh, R., & Hajmohammadi, H. (2011). Hydrochemistry, mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: a case study from the Sarcheshmeh mine, SE Iran. Applied Geochemistry, 26(5), 714-730.
Italy
 
  • Campania
    • Naples
      • Pozzuoli
- Russo, M., Campostrini, I., Demartin, F. (2017): I minerali di origine fumarolica dei Campi Flegrei: Solfatara di Pozzuoli (Napoli) e dintorni. Micro, 15, 122-192.
  • Piedmont
    • Cuneo Province
Piccoli, G.C., Maletto, G., Bosio, P., Lombardo, B. (2007). Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" Alba, Ed., Alba (Cuneo) 607 pp.
    • Metropolitan City of Turin
      • Chialamberto
Piccoli, G.C., Maletto, G., Bosio, P., Lombardo, B. (2007): Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" Alba, Ed., Alba (Cuneo) 607 pp.
  • Tuscany
    • Lucca Province
      • Vergemoli
        • Fornovolasco
Mauro D. (2016): Studio cristallochimico di alcuni solfati di ferro della mineralizzazione a pirite tallifera di Fornovolasco (Alpi Apuane). Tesi magistrale, Dipartimento di Scienze della Terra, Unviersità di Pisa, 137 pp.
Peru
 
  • Ayacucho
    • Lucanas Province
      • Huac-huas (Huacuas)
Hyršl, J. (2010): Ein Neufund fantastischer Sulfate in der Mina Javier. Mineralien-Welt 21 (3), 68-71 (in German); Roth, P. and Meisser, N. (2012) Goldichit: Ausgezeichnete Kristalle aur Peru. Lapis, 37, #5, 37.
Poland
 
  • Lower Silesian Voivodeship
    • Kamienna Góra County
      • Gmina Marciszów
Siuda, R. (2004) Wieściszowice. Otoczak, No.31, 58-65. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A. (2012) Ore mineralization in the Miedzianka area (Karkonosze-Izera Massif, the Sudetes, Poland): new information. Mineralogia Polonica, 43:(3-4), 155-178.
Kornaga Collection
Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., & Pieczka, A. (2015). Ore mineralization related to geological evolution of the Karkonosze–Izera Massif (the Sudetes, Poland)—Towards a model. Ore Geology Reviews, 64, 215-238.
  • Silesian Voivodeship
    • Rybnik Co.
      • Gmina Czerwionka-Leszczyny
Kruszewski, Ł. (2013): Supergene minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology: 105: 91-109 (http://www.sciencedirect.com/science/article/pii/S0166516212002881)
    • Wodzisław Co.
      • Radlin
Kruszewski, Ł., Fabiańska, M.J., Segit, T., Kusy, D., Motyliński, R., Ciesielczuk, J., Deput, E., (2019): Carbon-nitrogen compounds, alcohols, mercaptans, monoterpenes, acetates, aldehydes, ketones, SF6, PH3, and other fire gases in coal-mining waste heaps of Upper Silesian Coal Basin (Poland) – a re-investigation by means of in situ FTIR external database approach. Science of The Total Environment (in press)
Slovakia
 
  • Prešov Region
    • Prešov District
      • Červenica
        • Dubník
Koděra, M. et al., 1986 a 1990 : Topografická mineralógia Slovenska, diel 1- 3, Veda – Vydavateľstvo SAV, Bratislava, 1990, 1 – 1590
Spain
 
  • Andalusia
    • Huelva
      • Minas de Riotinto
        • Rio Tinto Mines (Riotinto Mines)
Romero, A., I. Gonzalez & E. Galan (2006): The role of efflorescent sulfates in the storage of trace elements in stream waters polluted by acid mine-drainage: the case of Peña del Hierro, southwestern Spain. Can. Mineral. 44, 1431-1446.
      • Nerva
Romero, A., I. Gonzalez & E. Galan (2006): The role of efflorescent sulfates in the storage of trace elements in stream waters polluted by acid mine-drainage: the case of Pena del Hierro, southwestern Spain. Canadian Mineralogist 44, 1431-1446.
  • Extremadura
    • Cáceres
      • San Pedro Range
        • Aliseda
Crespo, Á., Pimentel, C., Pedraz, P., & Pina, C. M. (2017). First occurrence of the rare mineral slavikite in Spain. Journal of Iberian Geology, 43(3), 487-495.
Switzerland
 
  • Valais
    • Anniviers Valley
      • Ayer
Stalder, H. A., Wagner, A., Graeser, S. and Stuker, P. (1998): Mineralienlexikon der Schweiz. Wepf (Basel), p. 121.; Ansermet, S. (2012): Mines et minéraux du Valais - II. Anniviers et Tourtemagne. With contributions by N. Meisser, Ed. Porte-plumes (Ayer)
      • Saint-Luc
Ansermet, S. with contributions of Meisser, N. (2012): Mines et minéraux du Valais. II. Anniviers et Tourtemagne. Musée de la Nature (Sion), Musée Cantonal de Géologie (Lausanne), and Editions Porte-Plumes (Ayer), 374 pp.
Ansermet, S. with contributions of Meisser, N. (2012): Mines et minéraux du Valais. II. Anniviers et Tourtemagne. Musée de la Nature (Sion), Musée Cantonal de Géologie (Lausanne), and Editions Porte-Plumes (Ayer), 374 pp.
USA
 
  • Arizona
    • Coconino County
      • Cameron Mining District
Williams, S. & Cesbron, F. P. (1995). Wupatkiite from the Cameron uranium district, Arizona, a new member of the halotrichite group. Mineralogical Magazine, 59, 553-556.
    • Santa Cruz Co.
      • Patagonia Mountains
        • Palmetto Mining District
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 283; Bayliss, P. & D. Atencia (1985), X-ray powder diffraction data and cell parameters for copiapite group minerals, Canadian Mineralogist: 23: 53.
  • California
    • Napa Co.
      • Knoxville Mining District
        • Knoxville
Whitmore, D.R.E., et al (1946), Chrome micas: American Mineralogist: 31: 21; Melville, William Harlow & Waldemar Lindgren (1890), Contributions to the mineralogy of the Pacific coast: USGS Bulletin 61, 40pp.: 24; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 156, 247; www.mineralsocal.org
    • Riverside Co.
American Mineralogist (1939): 24: 182; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 63.
    • Shasta Co.
      • Klamath Mountains
        • West Shasta Copper - Zinc Mining District
          • Iron Mountain [town]
            • Iron Mountain
              • Iron Mountain Mine (Number 8; Confidence; Old Mine)
Jamieson, H. E., Robinson, C., Alpers, C. N., McCleskey, R. B., Nordstrom, D. K., & Peterson, R. C. (2005). Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California. Chemical Geology, 215(1), 387-405.
  • Colorado
    • Jefferson Co.
      • Foothill Mining District
Minerals of Colorado (1997) Eckels, E. B.
  • New Mexico
    • San Miguel Co.
Northrop, Minerals of New Mexico, 3rd rev. ed, 1996
  • North Carolina
    • Swain Co.
      • Great Smoky Mountains
Hammarstrom, Jane M. Seal II, Robert R., Meier, Allen L. and Jackson, John C. (2003) Weathering of Sulfidic Shale and Copper Mine Waste: Secondary Minerals and Metal Cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA; Environmental Geology: 45: 47.
  • Tennessee
    • Sevier Co.
Coskren, T. D. & Lauf, R. J. (2000): The Minerals of Alum Cave Bluff, Great Smoky Mountains, Tennessee. Mineralogical Record, 31, 163-175.; Rocks & Min. (2007) 82:235
  • Virginia
    • Louisa Co.
      • Gold-Pyrite Belt
        • Mineral
Minerals of Virginia, 1990 by R. V. Dietrich
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.1.24 10:46:53 Page generated: 2020.1.24 03:13:55
Go to top of page