Gold
This page kindly sponsored by Bruce Ueno
About Gold
Formula:
Au
As a Commodity:
Colour:
Rich yellow, paling to whitish-yellow with increasing silver; blue & green in transmitted light (only thinnest folia [gold leaf])
Lustre:
Metallic
Hardness:
2½ - 3
Specific Gravity:
15 - 19.3
Crystal System:
Isometric
Member of:
Name:
Gold is one of the first minerals used by prehistoric cultures. The Latin name for this mineral was "aurum" and Jöns Jakob Berzelius used Au to represent the element when he established the current system of chemical symbols. The Old English word "gold" first appeared in written form about 725 and may further have been derived from "gehl" or "jehl". May be derived from Anglo-Saxon "gold" = yellow. (Known to alchemists as Sol.)
Copper Group. Gold-Silver Series and Gold-Palladium Series.
A native element and precious metal, gold has long been prized for its beauty, resistance to chemical attack and workability. As it is found as a native element, has a relatively low melting point (1063 degrees Celsius) and is malleable, it has been used by mankind for thousands of years.
Gold is used as a standard for international currency and is also widely used in jewelry, electronics (where its superb properties as a conductor help offset its tremendous cost), dentistry and in photographic processes.
Gold occurs in significant amounts in three main types of deposits: hydrothermal quartz veins and related deposits in metamorphic and igneous rocks; in volcanic-exhalative sulphide deposits; and in consolidated to unconsolidated placer deposits. It may also occur in contact metamorphic or hypothermal deposits (eg. Skarns), or epithermal deposits such as volcanic fumaroles. It is most commonly found as disseminated grains in quartz veins with pyrite and other sulphides, or as rounded grains, flakes or nuggets in placer deposits in recent to ancient stream and river deposits. Gold is often panned from such deposits by taking advantage of its high density to wash away the lighter sediments from a pan or sluice.
Nuggets are almost exclusively hypogene in origin, forming mostly in veins, but can be somewhat modified in form and chemistry by weathering, erosion, and transport (Hough et al., 2007).
A native element and precious metal, gold has long been prized for its beauty, resistance to chemical attack and workability. As it is found as a native element, has a relatively low melting point (1063 degrees Celsius) and is malleable, it has been used by mankind for thousands of years.
Gold is used as a standard for international currency and is also widely used in jewelry, electronics (where its superb properties as a conductor help offset its tremendous cost), dentistry and in photographic processes.
Gold occurs in significant amounts in three main types of deposits: hydrothermal quartz veins and related deposits in metamorphic and igneous rocks; in volcanic-exhalative sulphide deposits; and in consolidated to unconsolidated placer deposits. It may also occur in contact metamorphic or hypothermal deposits (eg. Skarns), or epithermal deposits such as volcanic fumaroles. It is most commonly found as disseminated grains in quartz veins with pyrite and other sulphides, or as rounded grains, flakes or nuggets in placer deposits in recent to ancient stream and river deposits. Gold is often panned from such deposits by taking advantage of its high density to wash away the lighter sediments from a pan or sluice.
Nuggets are almost exclusively hypogene in origin, forming mostly in veins, but can be somewhat modified in form and chemistry by weathering, erosion, and transport (Hough et al., 2007).
Classification of Gold
Approved, 'Grandfathered' (first described prior to 1959)
1/A.01-40
1.AA.05
1 : ELEMENTS (Metals and intermetallic alloys; metalloids and nonmetals; carbides, silicides, nitrides, phosphides)
A : Metals and Intermetallic Alloys
A : Copper-cupalite family
1 : ELEMENTS (Metals and intermetallic alloys; metalloids and nonmetals; carbides, silicides, nitrides, phosphides)
A : Metals and Intermetallic Alloys
A : Copper-cupalite family
Dana 7th ed.:
1.1.1.1
1.1.1.1
1 : NATIVE ELEMENTS AND ALLOYS
1 : Metals, other than the Platinum Group
1 : NATIVE ELEMENTS AND ALLOYS
1 : Metals, other than the Platinum Group
1.5
1 : Elements and Alloys (including the arsenides, antimonides and bismuthides of Cu, Ag and Au)
1 : Elements and Alloys (including the arsenides, antimonides and bismuthides of Cu, Ag and Au)
Physical Properties of Gold
Metallic
Transparency:
Opaque
Colour:
Rich yellow, paling to whitish-yellow with increasing silver; blue & green in transmitted light (only thinnest folia [gold leaf])
Streak:
Shining yellow
Hardness:
2½ - 3 on Mohs scale
Hardness:
VHN10=30 - 34 kg/mm2 - Vickers
Hardness Data:
Measured
Tenacity:
Malleable
Cleavage:
None Observed
None
None
Fracture:
Hackly
Density:
15 - 19.3 g/cm3 (Measured) 19.309 g/cm3 (Calculated)
Comment:
Calculated density at 0° C. Depends on silver content (pure gold is 19.3).
Optical Data of Gold
Type:
Isotropic
Type:
Isotropic
Reflectivity:
400nm | R=24.9% |
420nm | R=26.5% |
440nm | R=28.1% |
460nm | R=31.6% |
480nm | R=39.0% |
500nm | R=49.5% |
520nm | R=57.8% |
540nm | R=63.4% |
580nm | R=67.8% |
600nm | R=71.0% |
620nm | R=73.8% |
640nm | R=76.1% |
660nm | R=78.2% |
680nm | R=81.9% |
700nm | R=83.6% |
Graph shows reflectance levels at different wavelengths (in nm). Top of box is 100%. Peak reflectance is 83.6%.
Colour in reflected light:
Yellow to white with increasing silver, reddish with copper
Internal Reflections:
none
Pleochroism:
Non-pleochroic
Chemical Properties of Gold
Formula:
Au
Elements listed:
CAS Registry number:
Common Impurities:
Ag,Cu,Pd,Hg,Bi
Crystallography of Gold
Crystal System:
Isometric
Class (H-M):
m3m (4/m 3 2/m) - Hexoctahedral
Space Group:
Fm3m
Cell Parameters:
a = 4.0786 Å
Unit Cell V:
67.85 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Usually crude to rounded octahedra, cubes, and dodecahedra to 2 cm. Often elongated along [100] or [111] directions, forming herringbone and dendritic twins. Flattened {111} plates with triangular octahedral faces. Rarely as wires ([111] elongation); reticulated; dendritic; arborescent; filiform; spongy; also massive in rounded fragments, flattened grains and scales (gold dust).
Twinning:
Common on (111) to give herringbone twins. Repeated on (111) to give stacks of spinel twins that form hexagonal wires.
Crystallographic forms of Gold
Crystal Atlas:
Image Loading
Click on an icon to view
3d models and HTML5 code kindly provided by
www.smorf.nl.
Toggle
Edge Lines | Miller Indices | Axes
Transparency
Opaque | Translucent | Transparent
View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
Toggle
Edge Lines | Miller Indices | Axes
Transparency
Opaque | Translucent | Transparent
View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction
Powder Diffraction Data:
d-spacing | Intensity |
---|---|
2.355 Å | (100) |
2.039 Å | (52) |
1.230 Å | (36) |
1.442 Å | (32) |
0.9357 Å | (23) |
0.8325 Å | (23) |
0.9120 Å | (22) |
Occurrences of Gold
Paragenetic Mode(s):
• Sulfide/arsenide/selenide veins
• Silica veins
• Placer/detrital/heavy separates
• Silica veins
• Placer/detrital/heavy separates
Synonyms of Gold
Other Language Names for Gold
Afrikaans:Goud
Albanian:Ari
Amharic:ወርቅ
Arabic:ذهب
Armenian:Ոսկի
Asturian:Oru
Aymara:Quri
Azeri:Qızıl
Basque:Urre
Belarusian:Золата
Bengali:সোনা
Bishnupriya Manipuri:ঔরো
Bosnian:Zlato
Bulgarian:Злато
Catalan:Or
Cherokee:ᎠᏕᎸ ᏓᎶᏂᎨ
Chuvash:Ылтăн
Corsican:Oru
Croatian:Zlato
Czech:Zlato
Danish:Guld
Dutch:Goud
Erzya:Сырне
Esperanto:Oro
Estonian:Kuld
Farsi/Persian:طلا
Finnish:Kulta
Friulian:Aur
Galician:Ouro
Gan:金
Georgian:ოქრო
German:Gediegen Gold
Greek:Χρυσός
Guarani:Kuarepotiju
Gujarati:સોનું
Haitian:Lò
Hakka:Kîm
Hebrew:זהב
Hindi:सोना
Hungarian:Arany
Icelandic:Gull
Ido:Oro
Indonesian:Emas
Irish Gaelic:Ór
Italian:Oro
Oro nativo
Oro nativo
Japanese:自然金
Javanese:Emas
Kannada:ಚಿನ್ನ
Kapampangan:Gintu
Kazakh (Cyrillic Script):Алтын
Kongo:Wolo
Korean:금
Kurdish (Latin Script):Zêr
Latin:Aurum
Latvian:Zelts
Limburgian:Goud
Lingala:Wólo
Lithuanian:Auksas
Lojban:solji
Low Saxon/Low German:Gold
Luxembourgish:Gold
Macedonian:Злато
Malay:Emas
Malayalam:സ്വര്ണ്ണം
Manx:Airh
Marathi:सोने
Min Nan:Au
Mongolian:Алт
Nahuatl:Cōztic teōcuitlatl
Norman:Or
Norwegian:Gull
Norwegian (Nynorsk):Gull
Novial:Ore (novial name for gold)
Occitan:Aur
Polish:Złoto
Portuguese:Ouro
Quechua:Quri
Ripuarian:Jold
Romanian:Aur
Russian:Золото
Sanskrit:सुवर्णम्
Scottish Gaelic:Òr
Serbian:Злато
Serbo-Croatian:Zlato
Sicilian:Oru
Simplified Chinese:自然金
Slovak:Zlato
Slovenian:Zlato
Spanish:Oro
Oro nativo
Oro nativo
Swahili:Dhahabu
Swedish:Guld
Gediget Guld
Gediget Guld
Tagalog:Ginto
Tajik (Cyrillic Script):Зар
Tamil:தங்கம்
Telugu:బంగారం
Thai:ทองคำ
Turkish:Altın
Ukrainian:Золото
Urdu:سونا
Uzbek (Latin Script):Oltin
Venetian:Oro
Vietnamese:Vàng
Welsh:Aur
Yiddish:גאלד
Zazaki:Zern
Zhuang:Gim
Zulu:Igolide
Varieties of Gold
Argentian Mercurian Gold | A variety of gold, containing up to 31 weight percent of silver and up to 15 weight percent of mercury. Compare also Unnamed (Ag-Au Amalgam). |
Bismuthian Gold | A variety of gold containing several weight percent of bismuth, possibly in solid solution (Palache, Berman & Frondel, 1944). |
Cuprian Gold | A variety of Gold possibly containing Cu in substitution for Au to at least 20%. |
Iridian Gold | An iridium-rich variety of gold. |
Mercurian Gold | A variety of gold with a Mercury content of up to 15 weight percent. |
Nickeloan Gold | Natural gold-nickel alloys with Ni contents up to 40 mass%. The colour of such alloys can be silver-white. |
Palladian Gold | A palladium-bearing variety of gold. |
Platinian Gold | A platinum-rich variety of gold. |
Plumbian Gold | A Pb-bearing variety from Polish Cu-bearing Zechstein polymetallic deposits. |
Porpezite | Gold-Palladium Series . |
Pyrrhochrysit | Silver rich gold |
Rhodite | A rhodian variety of Gold. Gold containing 34 to 43 weight percent Rh has been reported from Columbia & Mexico, but not confirmed. |
Relationship of Gold to other Species
Member of:
Other Members of this group:
Forms a series with:
Common Associates
Associated Minerals Based on Photo Data:
1,180 photos of Gold associated with Quartz | SiO2 |
81 photos of Gold associated with Hessite | Ag2Te |
69 photos of Gold associated with Pyrite | FeS2 |
59 photos of Gold associated with Sphalerite | ZnS |
52 photos of Gold associated with Sylvanite | (Au,Ag)2Te4 |
51 photos of Gold associated with Calcite | CaCO3 |
49 photos of Gold associated with Galena | PbS |
46 photos of Gold associated with Coloradoite | HgTe |
41 photos of Gold associated with Limonite | (Fe,O,OH,H2O) |
39 photos of Gold associated with Chalcopyrite | CuFeS2 |
Related Minerals - Nickel-Strunz Grouping
1.AA.05 | Aluminium | Al | Iso. m3m (4/m 3 2/m) : Fm3m |
1.AA.05 | Copper | Cu | Iso. m3m (4/m 3 2/m) : Fm3m |
1.AA.05 | Electrum | (Au,Ag) | |
1.AA.05 | Lead | Pb | Iso. m3m (4/m 3 2/m) : Fm3m |
1.AA.05 | Nickel | Ni | Iso. m3m (4/m 3 2/m) : Fm3m |
1.AA.05 | Silver | Ag | Iso. m3m (4/m 3 2/m) : Fm3m |
1.AA.05 | UM2004-08-E:AuCuPd | (Cu,Pd,Au) | |
1.AA.05 | UM1991-06-E:AuCu | Au3Cu | |
1.AA.10a | Auricupride | Cu3Au | Orth. |
1.AA.10b | Tetra-auricupride | AuCu | Tet. |
1.AA.10a | Cuproauride | Cu3Au | |
1.AA.15 | Anyuiite | AuPb2 | Tet. 4/mmm (4/m 2/m 2/m) : I4/mcm |
1.AA.15 | Khatyrkite | (Cu,Zn)Al2 | Tet. |
1.AA.15 | Iodine | I2 | |
1.AA.15 | Novodneprite | AuPb3 | Tet. 4 2m : I4 2m |
1.AA.15 | UM1985-02-E:AlZn | (Zn,Cu)Al2 | |
1.AA.20 | Cupalite | (Cu,Zn)Al | Orth. |
1.AA.25 | Hunchunite | Au2Pb | Iso. m3m (4/m 3 2/m) |
Related Minerals - Dana Grouping (8th Ed.)
Related Minerals - Hey's Chemical Index of Minerals Grouping
1.1 | Copper | Cu | Iso. m3m (4/m 3 2/m) : Fm3m |
1.2 | Silver | Ag | Iso. m3m (4/m 3 2/m) : Fm3m |
1.6 | Auricupride | Cu3Au | Orth. |
1.7 | Tetra-auricupride | AuCu | Tet. |
1.8 | Zinc | Zn | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
1.9 | Cadmium | Cd | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
1.10 | Danbaite | CuZn2 | Iso. |
1.11 | Zhanghengite | CuZn | Iso. |
1.12 | Mercury | Hg | Trig. 3m (3 2/m) : R3m |
1.13 | Kolymite | Cu7Hg6 | Iso. |
1.14 | Moschellandsbergite | Ag2Hg3 | Iso. m3m (4/m 3 2/m) |
1.15 | Eugenite | Ag11Hg2 | Iso. |
1.16 | Schachnerite | Ag1.1Hg0.9 | Hex. |
1.17 | Paraschachnerite | Ag3Hg2 | Orth. |
1.18 | Luanheite | Ag3Hg | Hex. |
1.19 | Weishanite | (Au,Ag,Hg) | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
1.20 | Indium | In | Tet. |
1.21 | Aluminium | Al | Iso. m3m (4/m 3 2/m) : Fm3m |
1.22 | Khatyrkite | (Cu,Zn)Al2 | Tet. |
1.23 | Cupalite | (Cu,Zn)Al | Orth. |
1.24 | Diamond | C | Iso. m3m (4/m 3 2/m) : Fd3m |
1.25 | Graphite | C | Hex. 6mm : P63mc |
1.26 | Chaoite | C | Hex. 6/mmm (6/m 2/m 2/m) : P6/mmm |
1.27 | Lonsdaleite | C | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
1.28 | Silicon | Si | |
1.29 | Tin | Sn | Tet. 4/mmm (4/m 2/m 2/m) : I41/amd |
1.30 | Lead | Pb | Iso. m3m (4/m 3 2/m) : Fm3m |
1.31 | Anyuiite | AuPb2 | Tet. 4/mmm (4/m 2/m 2/m) : I4/mcm |
1.31 | Novodneprite | AuPb3 | Tet. 4 2m : I4 2m |
1.32 | Leadamalgam | Pb0.7Hg0.3 | Tet. 4/mmm (4/m 2/m 2/m) : I4/mmm |
1.33 | Arsenic | As | Trig. 3m (3 2/m) : R3m |
1.34 | Arsenolamprite | As | Orth. mmm (2/m 2/m 2/m) |
1.35 | Paxite | CuAs2 | Mon. |
1.36 | Koutekite | Cu5As2 | Hex. |
1.37 | Domeykite | Cu3As | Iso. 4 3m : I4 3d |
1.38 | Algodonite | (Cu1-xAsx) | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
1.39 | Novákite | Cu20AgAs10 | Mon. |
1.40 | Kutinaite | Ag6Cu14As7 | Iso. |
1.41 | Antimony | Sb | Trig. 3m (3 2/m) : R3m |
1.42 | Stibarsen | AsSb | Trig. 3m (3 2/m) : R3m |
1.43 | Paradocrasite | Sb3As | Mon. 2 : B2 |
1.44 | Horsfordite | Cu, Sb | |
1.45 | Cuprostibite | Cu2(Sb,Tl) | Tet. 4/mmm (4/m 2/m 2/m) : P4/nmm |
1.46 | Allargentum | (Ag1-xSbx) | Hex. |
1.47 | Aurostibite | AuSb2 | Iso. m3 (2/m 3) : Pa3 |
1.48 | Dyscrasite | Ag3Sb | Orth. mm2 : Pmm2 |
1.49 | Bismuth | Bi | Trig. 3m (3 2/m) : R3m |
1.50 | Maldonite | Au2Bi | Iso. m3m (4/m 3 2/m) : Fd3m |
1.51 | Sulphur | S8 | Orth. mmm (2/m 2/m 2/m) : Fddd |
1.52 | Rosickýite | S | Mon. 2/m : P2/b |
1.53 | Selenium | Se | Trig. 3 2 : P31 2 1 |
1.54 | Tellurium | Te | Trig. 3 2 : P31 2 1 |
1.55 | Chromium | Cr | Iso. m3m (4/m 3 2/m) : Im3m |
1.56 | Rhenium | Re | Hex. |
1.57 | Iron | Fe | Iso. m3m (4/m 3 2/m) : Im3m |
1.58 | Chromferide | Fe3Cr1-x (x=0.6) | Iso. m3m (4/m 3 2/m) : Pm3m |
1.59 | Ferchromide | Cr3Fe1-x | Iso. m3m (4/m 3 2/m) : Pm3m |
1.60 | Wairauite | CoFe | |
1.61 | Nickel | Ni | Iso. m3m (4/m 3 2/m) : Fm3m |
1.62 | Kamacite | (Fe,Ni) | Iso. |
1.63 | Taenite | (Fe,Ni) | Iso. m3m (4/m 3 2/m) : Fm3m |
1.64 | Tetrataenite | FeNi | Tet. |
1.65 | Awaruite | Ni3Fe | Iso. m3m (4/m 3 2/m) : Fm3m |
1.66 | Palladium | (Pd,Pt) | |
1.67 | Potarite | PdHg | Tet. 4/mmm (4/m 2/m 2/m) : P4/mmm |
1.68 | Paolovite | Pd2Sn | Orth. |
1.69 | Stannopalladinite | (Pd,Cu)3Sn2 | Hex. |
1.70 | Cabriite | Pd2CuSn | Orth. mmm (2/m 2/m 2/m) : Pmmm |
1.71 | Taimyrite | (Pd,Cu,Pt)3Sn | Orth. |
1.72 | Atokite | (Pd,Pt)3Sn | Iso. m3m (4/m 3 2/m) : Fm3m |
1.73 | Rustenburgite | (Pt,Pd)3Sn | |
1.74 | Zvyagintsevite | Pd3Pb | Iso. |
1.75 | Plumbopalladinite | Pd3Pb2 | Hex. |
1.76 | Osmium | (Os,Ir,Ru) | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
1.77 | Iridium | (Ir,Os,Ru) | Iso. |
1.82 | Platinum | Pt | Iso. m3m (4/m 3 2/m) : Fm3m |
1.83 | Hongshiite | PtCu | Trig. |
1.84 | Niggliite | PtSn | Hex. |
1.85 | Isoferroplatinum | Pt3Fe | Iso. |
1.86 | Tetraferroplatinum | PtFe | Tet. |
1.87 | Tulameenite | Pt2CuFe | Tet. |
1.88 | Ferronickelplatinum | Pt2FeNi | Tet. |
1.89 | Rhodium | (Rh,Pt) | Iso. |
Fluorescence of Gold
none
Other Information
Thermal Behaviour:
Melting Point: 1062.4° ± 0.8°
Notes:
Completely soluble with Copper. Insoluble in acids except for aqua regia, with incomplete separation if more than 20% of silver is present.
Reported as spongy alteration pseudomorphs after Calaverite (Cripple Creek).
Reported as spongy alteration pseudomorphs after Calaverite (Cripple Creek).
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
Electrical conductor, transparent reflective coating, jewelry, dentistry, coinage, decorative coatings
Gold in petrology
An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.
References for Gold
Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Wibel (1852) Naturwissenschaftlicher Verein, Hamburg . Abhandlungen und Verhandlungen: 2: 87.
Hatch, F.H. and J.A. Chalmers (1895) The Gold Mines of the Rand. London: Macmillan & Co.
Scupham, J.R. (1898) The Buried Rivers of California as a Source of Gold. Mines and Minerals - November 1898.
Outerbridge Jr., Alexander E. (1899) Marvellous Increase in Production of Gold. AP Popular Science Monthly, March 1899.
Stone, George H. (1900) Gold Placers in Glaciated Regions. Mines and Minerals (June 1900).
Krusch (1903) Zeitschrift für praktische Geologie, Berlin, hale a.S.: 11: 331 (Simpson analysis).
Spencer, Arthur C. (1904) The Geology of the Treadwell Ore Deposits, Douglas Island, Alaska. Transaction of the American Institute of Mining Engineers - October 1904.
Douglass, Earl (1905) Source of the Placer Gold in Alder Gulch, Montana. Mines and Minerals - February 1905.
Evans, Horace F. (1905) The Source of the Fraser River Gold. Mining World - September 2, 1905.
Wilkinson, H.L. (1905) Deep Placer Deposits of Victoria. Engineering and Mining Journal - December 30, 1905.
Hart, T.S. (1906) Victorian Auriferous Occurrences. Australian Mining Standard - July 25, August 1, 1906. Serial. 2 parts.
Nenadkevwitsch (1907) Academy of Sciences, St. Petersburg, Trav. Mus. géol.: 1: 81.
Gregory, John W. (1907) Gold Mining and Gold Production (Cantor Lecture). Journal of the Society of Arts - Sept. 13, 1907. Serial. 1st part.
Tyrrell, J.B. (1907) Concentration of Gold in the Klondike. Economic Geology - June 1907.
Garrison, F. Lynwood (1909) Nature of Mining and Scientific Press - May 29, 1909.
Samojloff (1909) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 46: 286.
Cochrane, N.D. (1910) Geological Features of Fiji. Australian Mining Standard - August 3, 1910.
Day, Sosman (1910) American Journal of Science: 29: 93.
Lincoln, F.C. (1911) Types of Canadian Gold Deposits. Economic Geology: 6: 247.
Thomas, Jr., C.S. (1911) The Bugbear of Gold. Mining and Scientific Press - May 13, 1911.
Chernik (1912) Imperial Academy of Sciences, St. Petersburg, Trav. Mus. géol.: 6: 78.
Lakes, A. (1912) Geology of the Breckenridge Placers. Mines and Minerals - February 1912.
Nenadkevwitsch (1914) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 53: 609.
Ungemach (1916) Bulletin de la Société française de Minéralogie: 39: 5.
Goldschmidt, V. (1918) Atlas der Krystallformen. 9 volumes, atlas, and text: Volume 4: 75.
Doelter, C. (1922) Handbuch der Mineral-chemie (in 4 volumes divided into parts): 3 [2]: 187.
McKeehan (1922) Physical Review, a Journal of Experimental and Theoretical Physics: 20: 424.
Uglow, W.L., Johnston, W.A. (1923) Origin of the Placer Gold of the Barkerville Area, Cariboo District, British Columbia, Canada. Economic Geology: 18(8): 541-561.
Holgersson and Sedström (1924) Annalen der Physik, Halle, Leipzig: 75: 143.
Weiss (1925) Proceedings of the Royal Society of London: 108: 643 (artificial Au-Ag alloys).
Strukturberichte (1913-1926): 504 (Au-Cu series).
Ballard, S.M. (1928) Geology and Ore Deposits of the Rocky Bar Quadrangle. Idaho Bureau of Mines and Geology - Pamphlet, no. 26, 41 pp.
Ferraz, L.C. (1929) Compendio dos Mineraes do Brazil en forma Diccionario 645pp., Rio de Janeiro: 326.
Freise, F.W. (1931) Transportation of Gold by Organic Underground Solutions. Economic Geology: 26, 421-431.
Kellogg, A.E. (1931) Origin of Flour Gold in Black Sands. Mining Journal, Phoenix, Arizona: 14(20)(March 15th): 3-4 and 49-50.
Schneiderhöhn, H., Ramdohr, P. (1931) Lehrbuch der Erzmikroskopie. 2 volumes: vol. 2, 714 pp.: 64.
Strukturberichte (1928-1932): 615 (Au-Cu series).
Drier, Walker (1933) Philosophical Magazine and Journal of Science: 16: 294.
Holloway, H.L. (1933) Alluvial Gold. Mining Magazine: 49(2) (Aug): 82-85.
Lindgren, W. (1933) Mineral Deposits. Fourth edition, 930pp. New York.
Owen, Yates (1933) Philosophical Magazine and Journal of Science: 15: 472 (On spectroscopically pure gold).
Treskinsky, S. (1933) Desert Placers. Mining Magazine: 49(4) (Oct 1933): 219-223 [Description of type of placer deposit occurring in Persia].
Vegard, Kloster (1934) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 89: 560.
Bürg, G. (1935) Die sekundaeren Umlagerungen und Anreicherungen des des Goldes in den Goldseifen. Zeitschrift für Praktische Geologie: 43(9) (Sept 1935): 134-139.
Fisher, M.S. (1935) Origins and Composition of Alluvial Gold, With Special Reference to Morobe Goldfield, New Guinea. Institution of Mining and Metallurgy - Bulletin 365, 366, 367, 369 and 370 Feb 1935, 46 p supp plates, (discussion) Mar p. 1-27 Apr p. 23-4, June p. 31-2 and (author's reply) July p. 5-14.
Heyerhoff, H.A. (1935) Do Gold Nuggets Grow or Are They Born that Way? Mining and Metallurgy: 16(no. 340, Apr 1935): 195.
Jurriaanse (1935) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 90: 322 (Bi solubility in Au).
Fisher, M.S. (1936) Origin and Composition of Alluvial Gold, with Special Reference to Morobe Goldfield, New Guinea. Institution of Mining and Metallurgy - Bulletin 378, Mar 1936 p. 27-31.
Crampton, F.A. (1937) Occurrence of Gold in Stream Placers. Mining Journal (Phoenix, Arizona): 20(16): 3-4 and 33-34.
Emmons, W.H. (1937) Gold Deposits of the World. New York: McGraw Hill.
Van Aubel, R. (1937) Sur l'origine de l'or et des pepites alluvionnaires. Chronique des Mines Coloniales: 6(64): 238-262.
Palache, C., Berman, H., and Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Seventh edition, Volume I: 89-95.
Hoffman, A. (1947) Free Gold, Story of Canadian Mining Rinehart and Co. New York and Toronto, 420 p.
Gorbunov, E.Z. (1959) K voprosu o dal'nosti perenosa rossypnogo zolota ot korennykh istochnikov. Sovetskaya Geologiya: 2(6) (June 1959): 98-105. Transportation of gold during formation of placers].
Gorbunov, E.Z. (1963) Osobennosti razvitiya gidroseti i voprosy rossypnoi zolotonostnosti na Severo-Vostoke SSSR. Sovetskaya Geologiya n 4 Apr 1963 p 73-84 [Evolution features of hydrographic networks and problems of occurrence of gold, tin, and tungsten placers in northeast of the former Soviet Union].
Ivensen, Yu.P., Stepanov, A.A., Chaikovskii, V.K. (1963) K probleme zolotonosnykh konglomeratov. Razvedka i Okhrana Nedr n 2 Feb 1963 p. 1-7.
[Problem of gold-bearing conglomerates].
Sher, S.D. (1965) O sootnoshenii masshtabov korennoi i rossypnoi zolotonosnosti v razlichnykh zolotonosnykh provintsiyakh zemnogo shara. Sovetskaya Geologiya n 3 Mar 1965 p. 3-9 [Relationship between the magnitude of primary gold deposits and gold placers in various gold-bearing provinces of the world].
Hammett, A.B.J. (1966) The History of Gold. Kerrville: Braswell Printing.
Ferguson, S.A. et al (1973) Gold Deposits of Ontario (2 volumes); Ontario Division of Mines Circular 13.
Boyle (1979) The geochemistry of gold and its deposits.
Bache (1982) Les gisements d'or dans le monde.
Decaluwé, G. (1997) Goud. Nautilus Info, 22(2), 33-46.
Fleet, M.E. and Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis. American Mineralogist: 82: 182-193.
Maddox, L.M. et al. (1998) Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist: 83: 1240-1245.
Deksissa, D.J. and Koeberl, C. (2002) Geochemistry and petrography of gold-quartz-tourmaline veins of the Okote area, southern Ethiopia: implications for gold exploration. Mineralogy and Petrology: 75: 101-122.
Extra Lapis (English), No. 5 - Gold (2003).
Morris, Neil (2005) Gold and Silver. Appleseed Editions Ltd, East Sussex.
Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S., and Ewing, R.C. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta: 69: 2781-2796.
Reith, F., Rogers, S.L., McPhail, D.C., and Webb, D. (2006) Biomineralization of Gold: Biofilms on Bacterioform Gold. Science: 313(5784): 233-236.
Hough, R.M., Butt, C.R.M., Reddy, S.M., and Verrall, M. (2007) Gold nuggets: supergene or hypogene? Australian Journal of Earth Sciences: 54: 959-964.
Hough, R.M. et al. (2008) Naturally occurring gold nanoparticles and nanoplates. Geology: 36: 571-574.
Hough, R.M., Butt, C.R.M., and Fischer-Bühner, J. (2009) The crystallography, metallography and composition of gold. Elements: 5: 297-302.
Majzlan, J., Chovan, M., Andráš, P., Newville, M., and Wiedenbeck, M. (2010) The nanoparticulate nature of invisible gold in arsenopyrite from Pezinok (Slovakia). Neues Jahrbuch für Mineralogie - Abhandlungen: 187: 1-9.
Hough, R.M., Noble, R.R.P., and Reich, M. (2011) Natural gold nanoparticles. Ore Geology Reviews: 42: 55-61.
Fougerouse, D., Reddy, S.M., Saxey, D.W., Rickard, W.D.A., van Riessen, A., and Micklethwaite, S. (2016) Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy. American Mineralogist (online).
Internet Links for Gold
mindat.org URL:
https://www.mindat.org/min-1720.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
Significant localities for Gold
Showing 34 significant localities out of 32,112 recorded on mindat.org.
Locality List




All localities listed without proper references should be considered as questionable.
Argentina | |
| Raúl Jorge Tauber Larry´s collection.Peña, H. A. (1970): Minerales y Rocas de Aplicación de la Provincia de Tucumán. Dirección Provincial de Minas. Tucumán. |
Australia | |
| Bottrill & Baker (in prep) Catalogue of minerals of Tasmania |
Bottrill & Baker (in prep) Catalogue of minerals of Tasmania; Amy B.D. Cockerton and Andrew G. Tomkins (2012): Insights into the Liquid Bismuth Collector Model Through Analysis of the Bi-Au Stormont Skarn Prospect, Northwest Tasmania. Economic Geology 107, 667-682. | |
Canada | |
| ; Mauthier, M. and C. A. Francis (2006) Gold Crystal Localities of British Columbia, Canada. Rocks & Minerals 81:14-22; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1986, Paper 1987-1, pp. 15-22 |
| Swinden, S., McBRIDE, D., & Dube, B. (1990). Preliminary geological and mineralogical notes on the Nugget Pond gold deposit, Baie Verte Peninsula, Newfoundland. Current Research, Newfoundland Department of Mines and Energy Report of Activities, Mineral Development Division, 201-215. |
| ; http://en.wikipedia.org/wiki/McIntyre_Mines; The Palache, Charles, Harry Berman & Clifford Frondel (1944),The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, Volume I, 834pp.: 94.; Econ Geol (1987) 82:1177-1191; Economic Geology November 1988 v. 83 no. 7 p. 1347-1368 ; Ontario MDI Number: MDI42A06NW00032 |
| Ann P. Sabina,(1974), " Rocks and Minerals for the Collector- Cobalt-Belleterre-Timmins; Ontario and Quebec", Geological Survey of Canada Paper 73-13 (1974), |
Ireland | |
| Ovoca Gold Exploration reports.; Lusty, P. A., Naden, J., Bouch, J. J., McKervey, J. A., & McFarlane, J. A. (2011). Atypical gold mineralization in an orogenic setting—the Bohaun Deposit, western Irish Caledonides. Economic Geology, 106(3), 359-380. |
| UKJMM Vol.29 p.14 |
Romania | |
| Carles Curto Milà collection |
| No reference listed |
Russia | |
| Ozerskii, A.D. [Озерский, А.Д.] (1843) Description of the gold nugget-giant [Описание золотой самородки-исполина]. Gornyi Zhurnal (Mining Journal) [Горный журнал], 8, 3, 232-251 (in Russian); Fersman, A.E., and Betekhtin, A.G., eds. [Ферсман, А.Е., и Бетехтин, А. Г., ред.] (1941) Mineralogy of the Urals [Минералогия Урала]. USSR Academy of Science Press [Издательство Академии Наук СССР], Moscow - Leningrad, Volume 2, 414 pp. (in Russian); Smolin, A.P [Смолин, А.П.] (1970) Gold nuggets of the Urals [Самородки золота Урала]. Nedra [Недра], Moscow, 144 pp. (in Russian); Samusikov, V.P. [Самусиков, В.П.] (2005) Gold nuggets: morphological peculiarities [Самородки золота - морфологические особенности]. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva [Записки Российского Минералогического Общества], 134, 5, 52-67. |
| Cook, R. B. (2007). Crocoite: Dundas, Tasmania, Australia. Rocks & Minerals, 82(1), 50-54; Seltmann, R., Soloviev, S., Shatov, V., Pirajno, F., Naumov, E., & Cherkasov, S. (2010). Metallogeny of Siberia: tectonic, geologic and metallogenic settings of selected significant deposits*. Australian Journal of Earth Sciences, 57(6), 655-706; Vikentyev, I. V., & Vikentyeva, O. V. (2015). Precious metal minerals and “invisible” gold in sulfide ores of Urals. In Mater. of ХII Int. Sci. Conf.“Advanced Technologies, Equipment and Analytical Systems for Materials and Nano-Materials (Vol. 3, pp. 33-41).; Lehmann, B., Heinhorst, J., Hein, U., Neumann, M., Weisser, J. D., & Fedesejev, V. (1999). The Bereznjakovskoje gold trend, southern Urals, Russia. Mineralium Deposita, 34(3), 241-249. |
Taiwan | |
| James K.C.Huang Collection; Chemical Geology 154 1999. 155–167; Chemical Geology 154 1999. 155–167; Hwang, J. Y and Meyer, H O A (1982) The Mineral Chemistry and Genesis of the Chinkuashih ore deposits, Taiwan. Proceedings of the Geological Society of China 25:88-101 |
UK | |
| Russell (1929); [Embrey & Symes, 1987 - "Minerals of Cornwall and Devon"]; Econ Geol (1997) 92:468-484; C. J. Stanley, A. J. Criddle and D. Lloyd (1990) Precious and Base Metal Selenide Mineralization at Hope's Nose, Torquay, Devon. Mineralogical Magazine 54:485-493 |
USA | |
| Mineralogy of Alabama Geol Surv Ala. Bull120 |
| Mineralogical Record (2007): 38: 212; Rocks & Minerals 83:5 pp 392-401; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10031128. |
| Eidahl, D. (1977): Gold from the Colorado quartz mine. Mineralogical Record 8, 440-441; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 23; Economic Geology (1987): 82: 328-344; Cook, Lees, Francis (2009) The Colorado Quartz Gold Mine Mariposa County, California. Rocks & Minerals 84:396-412 |
| Rocks & Minerals, Volume 69, Issue 6 December 1994, pages 371 - 378 |
| Waring, Clarence (1917) Mines and Mineral Resources of the Counties of El Dorado, Placer, Sacramento, Yuba. State Mineralogists Report 1915-1916. |
MinRec.:20(5):387 & 31:20. | |
| Speckels, M.L. (1965) Minerals for everyone: the complete guide to micromounts. Gembooks, Mentone, California.; Eckel, E.B. (1997) Minerals of Colorado. |
| Rocks & Min.:57:61. |
| Maneotis: 2009 |
| Minerals of Colorado (1997) Eckel, E. B. |
| the Book "Colorado Gold" by Allen Bird (ex manager of the mine); Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; Minerals of Colorado (1997) Eckel, E. B. |
| Rocks & Min.: 64:196. |
| Wilson, W. E. (2009): The Round Mountain mine, Nye County, Nevada. Mineralogical Record, 40:105-115 |
| Rocks and Minerals, (1989) 64:397-403 |
| [www.johnbetts-fineminerals.com] |
R&M 79:1 p44-54 | |
| U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia. |
| Eric He's Collection |
| Rice Museum |
Quick NavTopAbout GoldClassification Physical Properties Optical Data Chemical Properties Crystallography Crystallographic forms X-Ray Powder DiffractionOccurrences SynonymsOther LanguagesVarietiesRelationshipsCommon AssociatesNickel-StrunzDanaHey's CIMFluorescence Other InformationGold in petrologyReferences Internet Links Significant localities Locality List
Colorado Mine, Colorado, Colorado Mining District, Whitlock Mining District, Bagby-Mariposa-Mount Bullion-Whitlock Mining District, Mother Lode Belt, Mariposa Co., California, USA