SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Ferro-richterite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About Ferro-richteriteHide

Formula:
{Na}{CaNa}{Fe2+5}(Si8O22)(OH)2
The richterite group minerals are defined as sodium-calcium amphiboles with 0.5 apfu < A(Na+K+2Ca) where Na or K is dominant, and with C(Al+Fe3++2Ti)<0.5 apfu. The W position may contain (OH),F or Cl.

Ferro-richterite is defined with
A position: Na dominant
C position: Fe2+ dominant
W position: (OH) dominant.
Colour:
Brown to brownish-red, rose-red, yellow, grey-brown, also pale to dark green.
Lustre:
Vitreous
Hardness:
5 - 6
Crystal System:
Monoclinic
This page provides mineralogical data about Ferro-richterite.


Classification of Ferro-richteriteHide

Approved, 'Grandfathered' (first described prior to 1959)
9.DE.20

9 : SILICATES (Germanates)
D : Inosilicates
E : Inosilicates with 2-periodic double chains, Si4O11; Clinoamphiboles
14.25.7

14 : Silicates not Containing Aluminum
25 : Silicates of Fe, Ca and alkalis and of Fe, Mg, Ca and alkalis

Pronounciation of Ferro-richteriteHide

Pronounciation:
PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of Ferro-richteriteHide

Vitreous
Colour:
Brown to brownish-red, rose-red, yellow, grey-brown, also pale to dark green.
Hardness:
5 - 6 on Mohs scale

Optical Data of Ferro-richteriteHide

Type:
Biaxial (-)
RI values:
nα = 1.690 nγ = 1.710
2V:
Measured: 68° to 72°
Max Birefringence:
δ = 0.020
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
strong

Chemical Properties of Ferro-richteriteHide

Formula:
{Na}{CaNa}{Fe2+5}(Si8O22)(OH)2

The richterite group minerals are defined as sodium-calcium amphiboles with 0.5 apfu < A(Na+K+2Ca) where Na or K is dominant, and with C(Al+Fe3++2Ti)<0.5 apfu. The W position may contain (OH),F or Cl.

Ferro-richterite is defined with
A position: Na dominant
C position: Fe2+ dominant
W position: (OH) dominant.
IMA Formula:
Na(NaCa)Fe2+5Si8O22(OH)2
Common Impurities:
Ti,Al,Cr,Mn,K

Crystallography of Ferro-richteriteHide

Crystal System:
Monoclinic
Cell Parameters:
a = 9.98 Å, b = 18.22 Å, c = 5.29 Å
β = 103.73°
Ratio:
a:b:c = 0.548 : 1 : 0.29
Unit Cell V:
934.42 ų (Calculated from Unit Cell)

Other Language Names for Ferro-richteriteHide

Relationship of Ferro-richterite to other SpeciesHide

Other Members of this group:
Ferro-fluoro-richterite{Na}{CaNa}{Fe2+5}(Si8O22)F2
Fluoro-richterite{Na}{CaNa}{Mg5}(Si8O22)(F,OH)2Mon. 2/m
Potassic-ferro-richterite{K}{CaNa}{Fe2+5}Si8O22(OH)2
Potassic-fluoro-richterite{K}{CaNa}{Mg5}(Si8O22)(F,OH)2Mon.
Potassic-richterite{K}{CaNa}{Mg5}Si8O22(OH)2Mon. 2/m : B2/m
Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m

Common AssociatesHide

Associated Minerals Based on Photo Data:
1 photo of Ferro-richterite associated with Ferro-ferri-katophoriteNa(NaCa)(Fe2+4Fe3+)(Si7Al)O22(OH)2

Related Minerals - Nickel-Strunz GroupingHide

9.DE.Clino-suenoite◻{Mn2+2}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.05Cummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2Mon.
9.DE.05Clino-holmquistite Root Name Group◻{Li2}{Z2+3Z3+2}(Si8O22)(OH,F,Cl)2Mon.
9.DE.05Grunerite◻{Fe2+2}{Fe2+5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.05Permanganogrunerite◻{Mn2+2}{Mn2+5}(Si8O22)(OH)2Mon.
9.DE.05Ferri-fluoro-leakeite{Na}{Na2}{Mg2Fe3+2Li}(Si8O22)F2Mon. 2/m : B2/m
9.DE.10Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2Mon. 2/m : B2/m
9.DE.10Ferri-tschermakite◻{Ca2}{Mg3Fe3+2}(Al2Si6O22)(OH)2Mon.
9.DE.10Ferro-actinolite◻Ca2Fe2+5(Si8O22)OH2Mon.
9.DE.10Ferro-hornblende◻Ca2(Fe2+4Al)(Si7Al)O22(OH)2Mon.
9.DE.10Ferro-tschermakite◻{Ca2}{Fe2+3Al2}(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.10JoesmithitePb2+Ca2(Mg3Fe3+2)(Si6Be2)O22(OH)2Mon.
9.DE.10Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2Mon. 2/m : B2/m
9.DE.10Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.10Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.10CannilloiteCaCa2(Mg4Al)(Si5Al3O22)OH2Mon.
9.DE.10Fluoro-cannilloiteCaCa2(Mg4Al)(Si5Al3)O22F2Mon.
9.DE.10Parvo-manganotremolite◻{CaMn2+}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.10Fluoro-tremolite◻{Ca2}{Mg5}(Si8O22)F2Mon. 2/m : B2/m
9.DE.10Ferro-ferri-hornblende◻Ca2(Fe2+4Fe3+)(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.15EdeniteNaCa2Mg5(Si7Al)O22OH2Mon.
9.DE.15Ferro-edeniteNaCa2Fe2+5(Si7Al)O22OH2Mon.
9.DE.15Ferro-kaersutiteNaCa2{Fe2+3AlTi}(Si6Al2O22)O2Mon.
9.DE.15Ferro-pargasiteNaCa2(Fe2+4Al)(Si6Al2)O22(OH)2Mon.
9.DE.15HastingsiteNaCa2(Fe2+4Fe3+)(Si6Al2)O22OH2Mon.
9.DE.15KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2Mon.
9.DE.15Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2Mon.
9.DE.15PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2Mon. 2/m : B2/m
9.DE.15Sadanagaite{Na}{Ca2}{Mg3Al2}(Si5Al3O22)(OH)2Mon.
9.DE.15Fluoro-edeniteNaCa2Mg5(Si7Al)O22F2Mon. 2/m : P2/m
9.DE.15Potassic-ferro-ferri-sadanagaite{K}{Ca2}{Fe2+3Fe3+2}(Al3Si5O22)(OH)2Mon.
9.DE.15Potassic-sadanagaite{K}{Ca2}{Mg3Al2}(Al3Si5O22)(OH)2Mon.
9.DE.15Potassic-pargasiteKCa2(Mg4Al)(Si6Al2)O22(OH)2Mon.
9.DE.15Potassic-ferro-sadanagaite{K}{Ca2}{Fe2+3Al2}(Al3Si5O22)(OH)2Mon.
9.DE.15Magnesio-fluoro-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Potassic-fluoro-hastingsiteKCa2(Fe2+4Fe3+)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Potassic-chloro-hastingsiteKCa2(Fe2+4Fe3+)(Si6Al2)O22Cl2Mon. 2/m : B2/m
9.DE.15Fluoro-pargasiteNaCa2(Mg4Al)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Parvo-mangano-edenite{Na}{CaMn2+}{Mg5}(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.15Potassic-chloro-pargasiteKCa2(Mg4Al)(Si6Al2)O22Cl2Mon. 2/m : B2/m
9.DE.15Potassic-ferro-chloro-edeniteKCa2Fe2+5(AlSi7O22)Cl2
9.DE.15Potassic-magnesio-hastingsiteKCa2(Mg4Fe3+)(Si6Al2)O22(OH)2Mon. 2/m : B2/m
9.DE.15Potassic-ferro-pargasiteKCa2(Fe2+4Al)(Si6Al2)O22(OH)2Mon. 2/m : B2/m
9.DE.15Chromio-pargasite{Na}{Ca2}{Mg4Cr3+}(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.15Potassic-fluoro-pargasiteKCa2(Mg4Al)(Si6Al2)O22F2Mon. 2/m : B2/m
9.DE.15Ferri-kaersutiteNaCa2(Mg3Fe3+Ti)(Si6Al2O22)O2Mon. 2/m : B2/m
9.DE.15Vanadio-pargasiteNaCa2(Mg3+4V)(Al2Si6)O22(OH)2Mon. 2/m : B2/m
9.DE.20Ferro-taramiteNa(CaNa)(Fe2+3Al2)(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.20Barroisite◻{CaNa}{Mg3Al2}(AlSi7O22)(OH)2Mon.
9.DE.20Ferro-ferri-barroisite◻(CaNa)(Fe2+3Fe3+2)(AlSi7O22)(OH)2
9.DE.20Ferro-ferri-winchite◻[CaNa][Fe2+4(Fe3+,Al)]Si8O22(OH)2
9.DE.20Ferri-barroisite◻(CaNa)(Mg3Fe3+2)(AlSi7O22)(OH)2
9.DE.20Ferro-ferri-taramiteNa(CaNa)(Fe2+3Fe3+2)(Al2Si6O22)(OH)2
9.DE.20Ferro-ferri-katophoriteNa(NaCa)(Fe2+4Fe3+)(Si7Al)O22(OH)2Mon. 2/m : B2/m
9.DE.20Ferro-barroisite◻{CaNa}{Fe2+3Al2}(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.20Ferro-winchite ◻{CaNa}{Fe2+4Al}(Si8O22)(OH)2Mon.
9.DE.20Ferro-katophorite{Na}{CaNa}{Fe2+4Al}[(AlSi7)O22](OH)2Mon. 2/m : B2/m
9.DE.20Ferri-katophoriteNa(CaNa)(Mg4Fe3+)(AlSi7O22)(OH)2Mon.
9.DE.20Ferri-taramiteNa(CaNa)(Mg3Fe3+2)(Al2Si6O22)(OH)2Mon.
9.DE.20Magnesiotaramite{Na}{CaNa}{Mg3AlFe3+}(Al2Si6O22)(OH)2Mon.
9.DE.20Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.20Winchite◻{CaNa}{Mg4Al}(Si8O22)(OH)2Mon. 2/m
9.DE.20Taramite{Na}{CaNa}{Mg3Al2}(Al2Si6O22)(OH)2Mon. 2/m : B2/m
9.DE.20Fluoro-richterite{Na}{CaNa}{Mg5}(Si8O22)(F,OH)2Mon. 2/m
9.DE.20Katophorite{Na}{CaNa}{Mg4Al}[(AlSi7)O22](OH)2Mon. 2/m : B2/m
9.DE.20Potassic-fluoro-richterite{K}{CaNa}{Mg5}(Si8O22)(F,OH)2Mon.
9.DE.20Potassic-richterite{K}{CaNa}{Mg5}Si8O22(OH)2Mon. 2/m : B2/m
9.DE.20Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2Mon. 2/m
9.DE.20Ferri-winchite◻[CaNa][Mg4(Fe3+,Al)]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.20Fluoro-taramite{Na}{CaNa}{Mg3Al2}(Al2Si6O22)F2Mon. 2/m : B2/m
9.DE.20Fluoro-katophoriteNa(CaNa)(Mg4Al)(AlSi7O22)F2Mon.
9.DE.20Ferri-fluoro-katophoriteNa(CaNa)(Mg4Fe3+)(AlSi7O22)F2Mon. 2/m : B2/m
9.DE.25Arfvedsonite[Na][Na2][Fe2+4Fe3+]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25EckermanniteNaNa2(Mg4Al}Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Ferro-eckermanniteNaNa2(Fe2+4Al)Si8O22(OH)2Mon.
9.DE.25Ferro-glaucophane◻[Na2][Fe2+3Al2]Si8O22(OH)2Mon.
9.DE.25Glaucophane◻[Na2][Mg3Al2]Si8O22(OH)2Mon.
9.DE.25Potassic-mangani-leakeite[(Na,K)][Na2][Mg2Mn3+2Li]Si8O22(OH)2Mon.
9.DE.25Mangano-ferri-eckermannite{Na}{Na2}{Mn2+4Fe3+}Si8O22(OH)2Mon.
9.DE.25Ferri-leakeite[Na][Na2][Mg2Fe3+2Li]Si8O22(OH)2Mon.
9.DE.25Magnesio-riebeckite◻{Na2}{Mg3Fe3+2}(Si8O22)(OH)2Mon.
9.DE.25Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.25NybøiteNaNa2(Mg3Al2)(AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.25Riebeckite◻[Na2][Fe2+3Fe3+2]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Mangano-mangani-ungarettiiteNaNa2(Mn2+2Mn3+3)(Si8O22)O2Mon.
9.DE.25Ferro-ferri-nybøiteNaNa2[(Fe2+3,Mg)Fe3+2](AlSi7O22)(OH)2Mon. 2/m : B2/m
9.DE.25Clino-ferro-ferri-holmquistite◻{Li2}{Fe2+3Fe3+2}(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.25Ferri-nybøiteNaNa2(Mg3Fe3+2](AlSi7O22)(OH)2Mon.
9.DE.25Ferro-ferri-leakeite[Na][Na2][Fe2+2Fe3+2Li]Si8O22(OH)2Mon.
9.DE.25Ferro-ferri-fluoro-leakeiteNa(Na2)(Fe2+2Fe3+2Li)(Si8O22)(F)2Mon.
9.DE.25Sodic-ferri-clinoferroholmquistiteNa0.5{Li2}{Fe2+3Fe3+2}(Si8O22)(OH)2Mon.
9.DE.25Magnesio-fluoro-arfvedsonite[Na][Na2][Mg4Fe3+][Si8O22](F,OH)2Mon.
9.DE.25Ferri-pedrizite[Na][Li2][Mg2Fe3+2Li]Si8O22(OH)2Mon.
9.DE.25Potassic-ferri-leakeite[K][Na2][Mg2Fe3+2Li]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Fluoro-nybøiteNaNa2(Mg3Al2)(AlSi7O22)(F,OH)2Mon. 2/m : B2/m
9.DE.25Mangani-dellaventuraiteNaNa2(MgMn3+2Ti4+Li)Si8O22O2Mon. 2/m : B2/m
9.DE.25Fluoro-pedriziteNaLi2(Mg2Al2Li)(Si8O22)F2Mon. 2/m : B2/m
9.DE.25Potassic-arfvedsonite[(K,Na)][Na2][Fe2+4Fe3+]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Mangani-obertiiteNaNa2(Mg3Mn3+Ti4+)Si8O22O2Mon. 2/m : B2/m
9.DE.25Potassic-magnesio-fluoro-arfvedsonite[(K,Na)][Na2][Mg4Fe3+][Si8O22][(F,OH)2]Mon. 2/m : B2/m
9.DE.25Ferro-ferri-pedrizite[Na][Li2][Fe2+2Fe3+2Li]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Potassic-magnesio-arfvedsonite[K][Na2][Mg4Fe3+]Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25PedriziteNaLi2(LiMg2Al2)(Si8O22)(OH)2Mon. 2/m : B2/m
9.DE.25Ferro-pedriziteNaLi2(Fe2+2Al2Li)Si8O22(OH)2Mon. 2/m : B2/m
9.DE.25Ferro-fluoro-pedrizite{Na}{Li2}{Fe2Al2Li}(Al2Si6O22)F2Mon. 2/m : B2/m
9.DE.25Fluoro-leakeiteNaNa2(Mg2Al2Li)(Si8O22)F2Mon. 2/m : B2/m
9.DE.25Ferro-ferri-obertiiteNaNa2(Fe2+3Fe3+Ti)Si8O22O2Mon. 2/m : B2/m
9.DE.25Ferri-obertiiteNaNa2(Mg3Fe3+Ti)Si8O22O2Mon. 2/m : B2/m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

14.25.1Winchite◻{CaNa}{Mg4Al}(Si8O22)(OH)2Mon. 2/m
14.25.2Ferri-winchite (of Leake 1978)
14.25.3Alumino-ferrowinchite ◻{CaNa}{Fe2+4Al}(Si8O22)(OH)2
14.25.4Ferro-ferri-winchite◻[CaNa][Fe2+4(Fe3+,Al)]Si8O22(OH)2
14.25.5Ferro-winchite ◻{CaNa}{Fe2+4Al}(Si8O22)(OH)2Mon.
14.25.6Arfvedsonite[Na][Na2][Fe2+4Fe3+]Si8O22(OH)2Mon. 2/m : B2/m
14.25.8ImandriteNa12Ca3Fe3+2(Si6O18)2Orth.
14.25.9Yakhontovite(Ca,Na)0.5(Cu,Fe,Mg)2(Si4O10)(OH)2 · 3H2OMon.

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Ferro-richteriteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Mineralogical Record: 29: 169-174.
Hawthorne, Frank C., and Roberta Oberti (2006), On the classification of amphiboles: Canadian Mineralogist: 44(1): 1-21.
Frank C. Hawthorne, Roberta Oberti, George E. Harlow, Walter V. Maresch, Robert F. Martin, John C. Schumacer, Mark D. Welch (2012): Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031–2048.

Internet Links for Ferro-richteriteHide

Localities for Ferro-richteriteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Angola
 
  • Huambo Province
    • Londuimbali
Amores-Casals, S.; Gonçalves, A.O.; Melgarejo, J.-C.; Molist, J.M. (2020) Nb and REE Distribution in the Monte Verde Carbonatite–Alkaline–Agpaitic Complex (Angola). Minerals 10, 5.
Bulgaria
 
  • Sofia City Province
Dyulgerov, M., Ovtcharova-Schaltegger, M., Ulianov, A., & Schaltegger, U. (2018). Timing of K-alkaline magmatism in the Balkan segment of southeast European Variscan edifice: ID-TIMS and LA-ICP-MS study. International Journal of Earth Sciences, 107(4), 1175-1192. Dyulgerov, M. (2005). Le plutonisme de tendance alcalin potassique de Stara planina, Bulgarie: etude petrologique des complexes de Buhovo-Seslavtzi, Svidnya et Shipka (Doctoral dissertation, Paris 11). Dyulgerov, M. M., & Platevoet, B. (2006). Unusual Ti and Zr aegirine-augite and potassic magnesio-arfvedsonite in the peralkaline potassic oversaturated Buhovo-Seslavtzi complex, Bulgaria. European Journal of Mineralogy, 18(1), 127-138. Lilov, P., Grozdanov, L., & Peeva, I. (1968). On the absolute age for the magmatic rocks from the deposits of Svidnya and Seslavci. Bulletin Geological Institute, Series Geochemistry, Mineralogy and Petrography, 17, 79-82.
Cameroon
 
  • Adamawa Region
    • Mayo-Banyo
      • Tikar plain
Njonfang, E., Moreau, C. (2000) The mafic mineralogy of the Pandé massif, Tikar plain, Cameroon: implications for a peralkaline affinity and emplacement from highly evolved alkaline magma. Mineralogical Magazine 64(3), 525-537.
Canada
 
  • Newfoundland and Labrador
    • Newfoundland
      • Baie Verte Peninsula
        • King´s Point
Miller, R. R., & Abdel-Rahman, A. M. (1995) The King's Point Complex, Newfoundland, and Its Potential for Rare-metal Mineralization. Geological Survey Report 95-1 pp159-175
  • Northwest Territories
    • Blachford Lake alkaline complex
SHEARD, E.R., WILLIAMS-JONES, A.E., HEILIGMANN, M., PEDERSON, C. AND TRUEMAN, D.L. (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Economic Geology, 107(1), 81-104.
Sheard, E.R. (2010); SHEARD, E.R., WILLIAMS-JONES, A.E., HEILIGMANN, M., PEDERSON, C. AND TRUEMAN, D.L. (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Economic Geology, 107(1), 81-104.
  • Nova Scotia
    • Cumberland Co.
Papoutsa, A., Pe-Piper, G., Piper, D.J.W. (2013) Amphiboles in A-type granites as indicators of complex magmatic systems: the Wentworth Pluton, Nova Scotia. 39th Annual Colloquium & Annual General Meeting 2013, Atlantic Geology: 49: 43.
  • Ontario
    • Thunder Bay District
Currie (1980)
  • Québec
    • Côte-Nord
      • Le Golfe-du-Saint-Laurent RCM
        • Gros-Mécatina
          • La Tabatière
The Canadian Mineralogist; February 1983; v. 21; no. 1; p. 81-91; LALONDE,A.E. & MARTIN, R.F. (1983) The Baie-des-Moutons syenitic complex, La Tabatiere, Quebec II. The ferromagnesian minerals. Canadian Mineralogist 21, 81-91.
    • Montérégie
      • La Vallée-du-Richelieu RCM
        • Mont Saint-Hilaire
Canadian Museum of Nature data (XRD, WDS)
Chile
 
  • Aisén
    • Aisén Province (Aysén Province)
Welkner, Daniela; Godoy, Estanislao; Bernhardt, Heinz-J. (2002): Peralkaline rocks in the Late Cretaceous Del Salto Pluton, Eastern Patagonian Andes, Aisen, Chile (47° 35'S). Revista Geologica de Chile 29, 3-15.
China
 
  • Sichuan
    • Liangshan Yi
      • Xichang County
Shellnutt, J. G., Jahn, B. M., & Dostal, J. (2010). Elemental and Sr–Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119(1-2), 34-46. Shellnutt, J. G., & Iizuka, Y. (2011). Mineralogy from three peralkaline granitic plutons of the Late Permian Emeishan large igneous province (SW China): evidence for contrasting magmatic conditions of A-type granitoids. European Journal of Mineralogy, 23(1), 45-61.
    • Panzhihua
      • Dong District
Shellnutt, J. G., & Iizuka, Y. (2011). Mineralogy from three peralkaline granitic plutons of the Late Permian Emeishan large igneous province (SW China): evidence for contrasting magmatic conditions of A-type granitoids. European Journal of Mineralogy, 23(1), 45-61. Shellnutt, J. G., & Jahn, B. M. (2010). Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: implications for the genesis of Fe–Ti oxide deposits and A-type granites of SW China. Earth and Planetary Science Letters, 289(3-4), 509-519. Shellnutt, J. G., & Zhou, M. F. (2007). Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chemical Geology, 243(3-4), 286-316. Zhang, Y., Luo, Y., & Yang, C. (Eds.). (1990). Panxi Rift and its geodynamics. Geological Publishing House. Zhong, H., Zhu, W. G., Hu, R. Z., Xie, L. W., He, D. F., Liu, F., & Chu, Z. Y. (2009). Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust. Lithos, 110(1-4), 109-128. Zhong, H., Campbell, I. H., Zhu, W. G., Allen, C. M., Hu, R. Z., Xie, L. W., & He, D. F. (2011). Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta, 75(5), 1374-1395. Zhou, M. F., Robinson, P. T., Lesher, C. M., Keays, R. R., Zhang, C. J., & Malpas, J. (2005). Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11), 2253-2280.
      • Miyi County
Shellnutt, J. G., Zhou, M. F., & Zellmer, G. F. (2009). The role of Fe–Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: an example from the Permian Baima igneous complex, SW China. Chemical Geology, 259(3-4), 204-217. Shellnutt, J. G., Wang, C. Y., Zhou, M. F., & Yang, Y. (2009). Zircon Lu–Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): constraints on the mantle source. Journal of Asian Earth Sciences, 35(1), 45-55. Zhong, H., Campbell, I. H., Zhu, W. G., Allen, C. M., Hu, R. Z., Xie, L. W., & He, D. F. (2011). Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta, 75(5), 1374-1395. Zhong, H., Zhu, W. G., Chu, Z. Y., He, D. F., & Song, X. Y. (2007). SHRIMP U–Pb zircon geochronology, geochemistry, and Nd–Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology, 236(1-2), 112-133. Shellnutt, J. G., Jahn, B. M., & Dostal, J. (2010). Elemental and Sr–Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119(1-2), 34-46.
  • Zhejiang
    • Hangzhou
      • Xiaoshan District
Li, X-H., Li, W-X., Li, Z.X., Ying, L. (2008) 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102 (1-2), 341-357. Wang, Q., Wyman, D.A., Li, Z.X., Bao, Z.W., Zhao, Z.H., Wang, Y.X., Jian, P., Yang, Y.H., Chen, L.L. (2010) Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Research, 178(1-4), 185-208.
Germany
 
  • Rhineland-Palatinate
    • Mayen-Koblenz District
      • Mendig
        • Mendig
in the collection of Christof Schäfer; Schäfer, Ch. & Schäfer, H. (2018) Über Dawsonit, Britholith, Ferriallanit und einige Amphibole aus den Auswürflingen des Laacher Vulkans, Der Aufschluss, Vol. 69(4), 201-219
Greenland
 
  • Sermersooq
    • Arsuk Fjord
Stephenson, D. & Upton, B. J. G. (1982) Ferromagnesian silicates in a differentiated alkaline complex: Kûngnât Fjeld, South Greenland. Mineralogical Magazine. 46: 283-300
Woolley, A.R.: Alkaline Rocks and Carbonatites of the World. Part 1: North and South America. British Museum (Natural History), London, 1987 [cited in http://www.koeln.netsurf.de/~w.steffens/green.htm]
India
 
  • Telangana
    • Nalgonda District
Talukdar, D., Pandey, A., Rao, N. C., Kumar, A., Pandit, D., Belyatsky, B., & Lehmann, B. (2018). Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, Eastern Dharwar Craton, southern India: evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent. Contributions to Mineralogy and Petrology, 173(8), 67.
Japan
 
  • Aichi Prefecture
    • Kitashitara County
      • Shitara
Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
  • Yamaguchi Prefecture
    • Ube City
MURAKAMI, Nobuhide (1964) Ferroedenite and Ferrorichterite in the Metasomatic Syenites from Utsugiono, Yamaguchi Prefecture, Japan. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 51, 3, 77-87.
Kenya
 
  • Nakuru County
    • Hell’s Gate National Park
Mineralogical Magazine, August 1998, V. 62, N° 4, pp. 477-486. / Journal of Petrology, Vol. 42, N° 4, pp. 825-845, 2001. / Mineralogical Magazine, Volume 66, Number 2, 1 April 2002, pp. 287-299(13) / The United Nations University, GEOTHERMAL TRAINING PROGRAMME Reports 2004, Number 1, Orkustofnun, Grensásvegur 9, IS-108 Reykjavík, Iceland
Malawi
 
  • Southern Region
    • Mulanje
Wooley (2001)
Mongolia
 
  • Khentii Province
    • Delgerkhaan District
Dostal, J., Owen, J. V., Shellnutt, J. G., Keppie, J. D., Gerel, O., & Corney, R. (2015). Petrogenesis of the Triassic Bayan-Ulan alkaline granitic pluton in the North Gobi rift of central Mongolia: Implications for the evolution of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 109, 50-62.
  • Khovd Province
    • Myangad District
Sarangua, N., (2019) Rare Metal Mineralization of the Khaldzan Burgedei Peralkaline Complex, Western Mongolia . PhD thesis Akita University 236p
Niger
 
  • Agadez
    • Aïr Mountains
Wolley, A.R. (2001): Alkaline Rocks and Carbonatites of the World: Africa.- The Geological Society, London
North Korea
 
  • Kangwon Province
    • Pyonggang County
Pavel M. Kartashov data
Norway
 
  • Buskerud
    • Kongsberg
Bonin, B. & Sørensen, H. (2003): The granites of the Mykle region in the southern part of the Oslo igneous province, Norway. Norges Geologiske Undersøkelse Bulletin, 441: 17-24
  • Telemark
    • Nome
Bowen, N. L. (1926). Carbonate rocks of Fen area, Norway. American Journal of Science, (72), 499-502. Saether, E. (1957). The alkaline rock province of the Fen area in southern Norway. Det Kongelige Norske Videnskabers Selskabs Skrifter, 1, 1-150. Bjørlykke, H., & SviNNDAL, S. (1960). The carbonatite and per-alkaline rocks of the Fen area. Mining and exploration work. Geology of Norway, Norges Geol. Unders, 208, 105-110. Barth, T. F. W., & Ramberg, I. B. (1966). The Fen circular complex. In Carbonatites (pp. 225-257). Interscience New York, NY. Griffin, W. L. (1973). Lherzolite nodules from the Fen alkaline complex, Norway. Contributions to Mineralogy and Petrology, 38(2), 135-146. Mitchell, R. H., & Brunfelt, A. O. (1975). Rare earth element geochemistry of the Fen alkaline complex, Norway. Contributions to Mineralogy and Petrology, 52(4), 247-259. Deans, T. (1978). Mineral production from carbonatite complexes: a world review. In Proceedings of the First International Symposium on Carbonatites (pp. 123-133). Andersen, T. (1983): Iron ores in the Fen central complex, Telemark (S.Norway): Petrography, chemical evolution and conditions of equilibrium. Norsk Geologisk Tidsskrift. 63, 73-82 Verschure, R. H., Maijer, C., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Priem, H. N. A., & Verdurmen, E. T. (1983). Dating explosive volcanism perforating the Precambrian basement in southern Norway. Nor. Geol. Unders., 380, 35-49. Andersen, T. (1984). Secondary processes in carbonatites: petrology of “rødberg”(hematite-calcite-dolomite carbonatite) in the Fen central complex, Telemark (South Norway). Lithos, 17, 227-245. Berg, B. I. & Nordrum, F. S. (1985): Bergverk i Telemark. Del 1: Malmgruver. Telemark Historie. Tidsskrift for Telemark Historielag. 6: 16-35 (p.25) Andersen, T. (1986): Compositional variation of some rare earth minerals from the Fen complex (Telemark, SE Norway): implications for the mobility of rare earths in a carbonatite system. Mineralogical Magazine. 50: 503-509 Andersen, T., & Qvale, H. (1986). Pyroclastic mechanisms for carbonatite intrusion: Evidence from intrusives in the Fen central complex, SE Norway. The Journal of Geology, 94(5), 762-769. Kresten, P., & Morogan, V. (1986). Fenitization at the Fen complex, southern Norway. Lithos, 19(1), 27-42. Andersen, T. (1987). Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma: REE and isotopic evidence from the Fen complex, southeast Norway. Chemical Geology: Isotope Geoscience section, 65(2), 147-166. Andersen, T., & Sundvoll, B. (1987). Strontium and neodymium isotopic composition of an early tinguaite (nepheline microsyenite) in the Fen complex, Telemark, Southeast Norway: Age and petrogenetic implications. Bulletin-Norges geologiske undersokelse, (409), 29-34. Andersen, T. (1988). Evolution of peralkaline calcite carbonatite magma in the Fen complex, southeast Norway. Lithos, 22(2), 99-112. Andersen, T., & Taylor, P. N. (1988). Pb isotope geochemistry of the Fen carbonatite complex, SE Norway: Age and petrogenetic implications. Geochimica et Cosmochimica Acta, 52(1), 209-215. Andersen, T. (1989). Carbonatite-related contact metasomatism in the Fen complex, Norway: effects and petrogenetic implications. Mineralogical Magazine, 53(372), 395-414. Andersen, T., & Austrheim, H. (1991). Temperature-HF fugacity trends during crystallization of calcite carbonatite magma in the Fen complex, Norway. Mineralogical Magazine, 55(378), 81-94. Dahlgren, S. (1994). Late Proterozoic and Carboniferous ultramafic magmatism of carbonatitic affinity in southern Norway. Lithos, 31(3-4), 141-154. Meert, J. G., Torsvik, T. H., Eide, E. A., & Dahlgren, S. (1998). Tectonic significance of the Fen Province, S. Norway: constraints from geochronology and paleomagnetism. The Journal of geology, 106(5), 553-564. Verschure, R., & Maijer, C. O. R. N. E. L. I. S. (2005). A new Rb-Sr isotopic parameter for metasomatism,▵ t, and its application in a study of pluri-fenitised gneisses around the Fen ring complex, South Norway. Norges geologiske undersøkelse, Bulletin, 445, 45-71. Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, 405-407.
  • Vestfold
    • Larvik
      • Stavern (Fredriksvärn)
        • Jahren pegmatite (Jaren pegmatite)
Piilonen, P.C., McDonald, A.M., Poirier, G., Rowe, R. & Larsen, A.O. (2014): Mafic minerals of the alkaline pegmatites in the Larvik plutonic complex, Oslo rift, southern Norway. Canadian Mineralogist. 51, 735-770
Portugal
 
  • Azores
    • São Miguel
Ridolfi, F., Renzulli, A., Santi, P., Upton, B.G.J., Evolutionary stages of crystallisation of weakly peralkine syenites: evidence from ejecta in the plinian deposits of Agua de Pau volcano (Sao Miguel, Azores Islands), Mineralogical Magazine, 67(4), 749-767, 2003
Russia
 
  • Irkutsk Oblast
Savel’eva, V.B., and Karmanov, N.S. (2008): Geology of Ore Deposits 50(8), 681-696.
  • Murmansk Oblast
    • Khibiny Massif
Konopleva, N.G., Ivanyuk, G.Y., Pakhomovsky, Y.A., Yakovenchuk, V.N., Men’shikov, Y.P., and Korchak, Y.A. (2008): Geology of Ore Deposits 50(8), 720-731.; Yakovenchuk V N, Ivanyuk G Y, Pakhomovsky Y A, Selivanova E A, Korchak J A, Nikolaev A P (2010) Strontiofluorite, SrF2, a new mineral species from the Khibiny Massif, Kola Peninsula, Russia. The Canadian Mineralogist 48, 1487-1492
Konopleva, N.G., Ivanyuk, G.Y., Pakhomovsky, Y.A., Yakovenchuk, V.N., Men’shikov, Y.P., and Korchak, Y.A. (2008): Geology of Ore Deposits 50(8), 720-731.
Konopleva, N.G., Ivanyuk, G.Y., Pakhomovsky, Y.A., Yakovenchuk, V.N., Men’shikov, Y.P., and Korchak, Y.A. (2008): Geology of Ore Deposits 50(8), 720-731.
Konopleva, N.G., Ivanyuk, G.Y., Pakhomovsky, Y.A., Yakovenchuk, V.N., Men’shikov, Y.P., and Korchak, Y.A. (2008): Geology of Ore Deposits 50(8), 720-731.
Sweden
 
  • Örebro County
    • Lindesberg
      • Nyberget ore field
No reference listed
  • Västernorrland County
    • Sundsvall
Sandström, F., Binett, T., Wiklund, C. & Vikström, J. (2010): Alnöområdets geologi och mineralogi. Litiofilen. 27 (2) :14-42
Turkey
 
  • Bitlis Province
    • Ahlat District
Aydar, E., Gourgaud, A., Ulusoy, I., Digonnet, F., Labazuy, P., Sen, E., ... & Tolluoglu, A. U. (2003). Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption. Journal of Volcanology and Geothermal Research, 123(3-4), 301-312. Çubukçu, H. E., Aydar, E., & Gourgaud, A. (2007). Comment on “Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): The most recent post-collisional volcanism in Turkey” by 189–211. Chemical Geology, 245(1-2), 120-129. Çubukçu, H. E., Ulusoy, I., Aydar, E. R. K. A. N., Ersoy, O., Şen, E. R. D. A. L., Gourgaud, A., & Guillou, H. (2012). Mt. Nemrut volcano (Eastern Turkey): temporal petrological evolution. Journal of Volcanology and Geothermal Research, 209, 33-60. Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A. Ü., & Güleç, N. (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent post-collisional volcanism in Turkey. Chemical Geology, 226(3-4), 189-211. Pearce, J. A., Bender, J. F., De Long, S. E., Kidd, W. S. F., Low, P. J., Güner, Y., ... & Mitchell, J. G. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1-2), 189-229. Sumita, M., & Schmincke, H. U. (2013). Impact of volcanism on the evolution of Lake Van I: evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past> 400,000 years. Bulletin of volcanology, 75(5), 714. Sumita, M., & Schmincke, H. U. (2013). Impact of volcanism on the evolution of Lake Van II: temporal evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past ca. 0.4 Ma. Journal of Volcanology and Geothermal Research, 253, 15-34. Ulusoy, İ., Labazuy, P., Aydar, E., Ersoy, O., & Çubukçu, E. (2008). Structure of the Nemrut caldera (Eastern Anatolia, Turkey) and associated hydrothermal fluid circulation. Journal of Volcanology and Geothermal research, 174(4), 269-283. Ulusoy, İ., Çubukçu, H. E., Aydar, E., Labazuy, P., Ersoy, O., Şen, E., & Gourgaud, A. (2012). Volcanological evolution and caldera forming eruptions of Mt. Nemrut (Eastern Turkey). Journal of Volcanology and Geothermal Research, 245, 21-39. Yılmaz, Y., Güner, Y., & Şaroğlu, F. (1998). Geology of the Quaternary volcanic centres of the East Anatolia. Journal of volcanology and geothermal research, 85(1-4), 173-210.
UK
 
  • Scotland
    • Highland
      • Eilean á Chèo
        • Isle of Skye
          • Luib
Tindle.A.G Mineralds of Britian and Ireland
USA
 
  • New Hampshire
www.bates.edu/acad/depts/geology/jcreasy.WM.html.
  • North Carolina
    • Pitt Co.
      • Fountain
Alkaline Rocks and Carbonatites of the World Part 1, North and South America-Wolley,A,R,-1987
  • Washington
    • Okanogan Co.
      • Golden Horn Batholith
Micro Probe Volume VI Number 8
 
矿物 and/or 产地  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.10.30 16:58:14 Page generated: 2020.9.12 00:02:33
Go to top of page