登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

GeneralComments on beryl colors and on other observations regarding iron-containing beryls

17th Feb 2020 12:22 UTCUwe Kolitsch Manager

Andersson, L.O. (2019): Comments on beryl colors and on other observations regarding iron-containing beryls. Canadian Mineralogist 57, 551-566.

Trivalent iron ions substituting for Al3+ are present in many beryls and are abundant in dark red and dark blue beryl. These ions do not contribute any color to the crystals. Dark blue beryl also contains octahedral Fe2+ ions, which are involved in giving the crystal the blue color. The colors of dark red and dark blue beryls are very stable. Tetrahedral iron ions are practically absent in these beryls, but are present in other beryls which change their color upon irradiation and heating. Their colors depend more on the radiation and temperature history of the crystals than on chemistry.

Trivalent iron ions substituting for Si4+ also do not contribute color. Rare observations by EPR (electron paramagnetic resonance) indicate that the charge difference can be compensated either by protons or by alkali ions in the beryl channels. It is shown that about 1% of the Fe3+ ions in dark red beryl substitute for Si4+.

The changing colors of iron-containing beryls have been interpreted in many different ways, but it is likely that they are due to ions substituting for Be2+. The present study suggests that the iron ions do not substitute isomorphically for Be, but that they enter a distorted tetrahedron which consists of one O(1) oxygen and three O(2) oxygens. The center of this T(3) tetrahedron is at (0.432, 0.344, 0.167) in the beryl structure and the distance to the four oxygen ions is 1.84 Å, compared to 1.65 Å in the Be tetrahedron, thus providing more space for the much larger iron ions. This site is so close to the Be site that both sites cannot be simultaneously occupied. Beryl crystals with Fe2+ ions in T(3) are colorless. Irradiation oxidizes these Fe2+ ions to Fe3+, which gives the beryl a yellow color. The aquamarine color is caused by pairs of Fe2+ and Fe3+ ions in neighboring T(3) tetrahedra. When both configurations are present, the crystal assumes a shade of green, depending on their relative proportion. The electrons released by the irradiation are trapped at sites which are probably associated with water molecules in the beryl channels. These electrons leave the traps upon heating and reduce the Fe3+ ions in the T(3) tetrahedra. The yellow color vanishes and the beryl becomes aquamarine blue. More electrons are released at higher temperatures and reduce both ions of the pairs, leaving the beryl colorless. The oxidation of the iron ions at even higher temperatures is connected with the release of water from the beryl crystal.

Beryl and aquamarine pages updated.
 
矿物 and/or 产地  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.4.20 03:43:58
Go to top of page