SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Golden Cross Mine, Waitekauri, Hauraki District, Waikato Region, New Zealandi
Regional Level Types
Golden Cross MineMine
Waitekauri- not defined -
Hauraki DistrictDistrict
Waikato RegionRegion
New ZealandCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
37° 19' 47'' South , 175° 46' 53'' East
Latitude & Longitude (decimal):
Locality type:
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Waihi4,619 (2011)7.5km
Paeroa3,994 (2011)10.9km
Waihi Beach2,014 (2011)15.5km
Whangamata4,253 (2011)16.3km
Athenree563 (2011)19.3km


The Golden Cross Mine site is situated eight kilometres northwest of Waihi in the Waitekauri Valley at the base of the Coromandel Peninsula. After producing 20.5 tonnes of gold and 52 tonnes of silver between 1991 and 1998 (worth $NZD430m at 2001 prices) the operation became the first modern mine in New Zealand to successfully move into planned closure and final rehabilitation.

It first operated as an underground gold mine from 1895 to 1920 and had produced two and half tons of gold in this time.


The Golden Cross Mine is at the end of the Golden Cross Road which heads north from Waikino. Rehabilitation has been so successful here there is little to see, other than the tailings dam, a vegetated open pit a fraction of its former self, and interpretative sign. In 2013 a sinkhole developed to one side of the open pit footprint, and has been fenced as a public safety measure.

Gold was discovered here by the Lowrie brothers around 1892, and the site was taken over by the Golden Cross Gold Mining Company in 1893. They erected a 5 stamp battery, expanded to 10 stamps in 1894 with a cyanide plant. This was replaced when the Waitekauri Gold Mining Company constructed a tramway to take the ore to its battery from 1895, 5 kilometres south to Waitekauri. There were very rich crushings in the early days, however the ore went to no depth. This was from the Golden Cross No. 1 Reef. Mining ceased around 1920.

Exploration in 1986, found an extension of the reef, called Empire, offset to the north. An open pit is on a shallow quartz stock work, and underground mine on the Empire vein system, and was developed by Coeur New Zealand Limited (80%), and Viking Mining Company (20%) from 1991. Mining was conducted under contract to Doug Hood Limited, who also undertook the rehabilitation work. Production figures found for this later period are variable, ie. 584 000 ounces Au and 1 675 000 ounces Ag from 5 Mt ore (infomine website PDF), or 662 000 oz Au from 5 136 300 tonnes of ore, and a combined historic and later period of 750 000 oz Au and 2 325 000 Ag (Simpson et.al, 2001).

The mine closed in 1998 due to low gold prices, and a land slip under the tailings dam, leading to its imminent demise, and forcing the company to spend $30 million dollars rectifying. Information found varies from an environmental catastrophe of the dam if an earthquake occurs, to one of the best mine rehabilitation engineering feats in New Zealand, depending in part on the author's world view. The URS study in the reference states there is little likelihood of the dam collapsing.

The deposit is hosted by the Waipupu Formation of pyroxene andesitic lava flows, volcanic breccia, lithic crystal tuff, and minor epiclastic sedimentary rocks. The andesitic lava flows contain phenocrysts of plagioclase, augite, and hypersthene, in a groundmass of plagioclase laths, Fe-Ti oxides, and interstitial glass. This forms the Hanging Wall of the Empire Fault in the mine.

The Waiharakeke Dacite is dacitic lava flows, tuff breccia, minor lithic crystal tuff, ignimbrite, and flow banded rhyolites. Mineralisation of the dacite is similar to the Waipupu Formation with the addition of hornblende. The Whakamoehau Andesite overlies the other two, consisting of andesite and dacite lava flows, and a similar mineralisation to the above two units.

There are five quartz veins in the area. The Hippo vein is just north of the open pit footprint, the Empire vein under the eastern side of the pit, and the Golden Cross No. 1, Empire South, and Tramway veins progressively south. The Empire vein occupies the Empire reverse fault, with the Western Boundary Fault at the western limit of the open pit. The West Mine and Pillar-Beefeater faults run parallel.

Most of the gold-silver is found in electrum and acanthite, with minor pyragyrite and tetrahedrite. Base metal sulphides include pyrite, marcasite, chalcopyrite, sphalerite, arsenopyrite and galena. Most ore is found in crustiform and colloform banded quartz veins. The main Empire Hanging Wall vein dips 65 degrees west, and trends north north-east. The Footwall veins to the east dip west up to 50 degrees, and at depth west 70-80 degrees. The near surface quartz stock work dips steeply north-west or south-east, and the veins are 10-20 cms wide.

The shallow veins of quartz are cryptocrystalline, while deeper in the Empire system are colloform banded. Cavities in the quartz are rimmed by comb quartz, and filled with chlorite, and rarely illite, pyrite and late calcite.

Adularia forms a wedged shaped zone, as an alteration of plagioclase phenocrysts, commonly filling open spaces within quartz veins, and may form 0.05 mm euhedral rhombic crystals.

Chlorite is 5-20% volume of the rock, as an alteration of hyperthene, augite, amphibole phenocrysts, and is found in the groundmass intergrown with quartz. It fills cavities, and forms veinlets, up to radiating masses. The veinlets are cut by late stage calcite.

Pyrite is the most abundant sulphide, found in veins, breccia, and altered country rock up to hundreds of metres from the quartz veins. It rims kaolinite veins, and is found in crystal clusters in kaolinite at depth. Pyritohedra and anhedral pyrite occurs with high Au grades, and cubic pyrite with low Au grades.

Marcasite is the second most abundant sulphide, and is found in similar circumstances as pyrite, except only tens of metres from the quartz veins, and as monomineralic veinlets cross cutting quartz vein stock works.

Titanite and leucoxene is widespread but less than 1% of rock volume as dissemination in the groundmass.

Illite and smectite is widespread flooding the groundmass, filling open cavities, and as veinlets. It also forms a discontinuous covering over the vein system. Illite dominates over smectite near the veins.

Calcite is late, massive, and barren veins, and as a common replacement mineral, especially at depth. It floods the groundmass, and forms veinlets to 5 mms wide cutting colloform quartz veins. At shallow levels the veins are rimmed by platy calcite with interlocking blades to 4 cms long, encrusted by fine grained quartz.

Siderite is found in localised areas, as late stage monomineralic 2 mm wide veinlets, as irregular rims on calcite filled cavities, and spaces within plagioclase and pyroxene phenocrysts.

Kaolinite is widespread, filling veinlets and fractures down to a depth of 400 metres from the surface. At shallow levels these may be rimmed by pyrite, and at depth containing instead clusters of anhedral to cubic pyrite. It is also found as 1 mm wide bands in colloform quartz in the Empire vein system.



Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


36 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
'Albite-Anorthite Series'
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
'Amphibole Supergroup'
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Arsenopyrite
Formula: FeAsS
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Baryte
Formula: BaSO4
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Bornite
Formula: Cu5FeS4
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Calcite
Formula: CaCO3
Reference: Simmons, S.F., Mauk, J.L., Simpson, M.P. (2000) The mineral products of boiling in the Golden Cross epithermal deposit. New Zealand Minerals & Mining Conference Proceedings, 29-31 October 2000.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Chalcopyrite
Formula: CuFeS2
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
'Chlorite Group'
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
Corrensite
Formula: (Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Cristobalite
Formula: SiO2
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
'Electrum'
Formula: (Au, Ag)
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
Galena
Formula: PbS
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
'Glass'
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Gold
Formula: Au
Reference: Bogie, I., Henderson, S., Lawless, J. (2018) The association of low-sulphidation epithermal gold deposits with bimodal volcanism and rifting in New Zealand: implications for exploration.
Gypsum
Formula: CaSO4 · 2H2O
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
'Halloysite'
Formula: Al2(Si2O5)(OH)4
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Hematite
Formula: Fe2O3
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
'Hypersthene'
Formula: (Mg,Fe)SiO3
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: Simpson, M.P., Mauk, J.L. (2011) Hydrothermal Alteration and Veins at the Epithermal Au-Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand. Economic Geology, 106:6, 945-973.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
'K Feldspar'
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
'K Feldspar var: Adularia'
Formula: KAlSi3O8
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
Leucoxene
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Marcasite
Formula: FeS2
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Minerals of New Zealand, Railton & Watters, 1990
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Muscovite var: Illite
Formula: K0.65Al2.0[Al0.65Si3.35O10](OH)2
Reference: Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
Natroalunite
Formula: NaAl3(SO4)2(OH)6
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
Polybasite
Formula: [(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Pyrargyrite
Formula: Ag3SbS3
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Pyrite
Formula: FeS2
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Pyrolusite
Formula: Mn4+O2
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
Pyrrhotite
Formula: Fe7S8
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
Quartz
Formula: SiO2
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Rutile
Formula: TiO2
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
Siderite
Formula: FeCO3
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Silver
Formula: Ag
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Sphalerite
Formula: ZnS
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
Sulphur
Formula: S8
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
'Tetrahedrite'
Formula: Cu6Cu4(X)2Sb4S13
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
Titanite
Formula: CaTi(SiO4)O
Reference: Simmons et al 2000, Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation Epithermal Au-Ag Deposit, Economic Geology 95, pp99-112
Zircon
Formula: Zr(SiO4)
Reference: Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Electrum'1.AA.05(Au, Ag)
Gold1.AA.05Au
Silver1.AA.05Ag
Sulphur1.CC.05S8
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Arsenopyrite2.EB.20FeAsS
Bornite2.BA.15Cu5FeS4
Chalcopyrite2.CB.10aCuFeS2
Galena2.CD.10PbS
Marcasite2.EB.10aFeS2
Polybasite2.GB.15[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Pyrargyrite2.GA.05Ag3SbS3
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
'Tetrahedrite'2.GB.05Cu6Cu4(X)2Sb4S13
Group 4 - Oxides and Hydroxides
Cristobalite4.DA.15SiO2
Hematite4.CB.05Fe2O3
Magnetite4.BB.05Fe2+Fe3+2O4
Pyrolusite4.DB.05Mn4+O2
Quartz4.DA.05SiO2
Rutile4.DB.05TiO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Baryte7.AD.35BaSO4
Chalcanthite7.CB.20CuSO4 · 5H2O
Gypsum7.CD.40CaSO4 · 2H2O
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Natroalunite7.BC.10NaAl3(SO4)2(OH)6
Group 9 - Silicates
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Corrensite9.EC.60(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
'Halloysite'9.ED.10Al2(Si2O5)(OH)4
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Illite9.EC.15K0.65Al2.0[Al0.65Si3.35O10](OH)2
Titanite9.AG.15CaTi(SiO4)O
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Chlorite Group'-
'Glass'-
'Hypersthene'-(Mg,Fe)SiO3
'K Feldspar'-
'var: Adularia'-KAlSi3O8
Leucoxene-
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Sulphur1.3.5.1S8
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø > 4
Polybasite3.1.7.2[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
3 <ø < 4
'Tetrahedrite'3.3.6.1Cu6Cu4(X)2Sb4S13
ø = 3
Pyrargyrite3.4.1.2Ag3SbS3
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
AX2
Pyrolusite4.4.1.4Mn4+O2
Rutile4.4.1.1TiO2
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
'Halloysite'71.1.1.4Al2(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
var: Illite71.2.2d.2K0.65Al2.0[Al0.65Si3.35O10](OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Corrensite71.4.2.5(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Cristobalite75.1.1.1SiO2
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
'Albite-Anorthite Series'-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Chlorite Group'-
'Electrum'-(Au, Ag)
'Glass'-
'Hypersthene'-(Mg,Fe)SiO3
'K Feldspar'-
'var: Adularia'-KAlSi3O8
Kaolinite-Al2(Si2O5)(OH)4
Leucoxene-
Natroalunite-NaAl3(SO4)2(OH)6
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O

List of minerals for each chemical element

HHydrogen
H Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
H Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
H KaoliniteAl2(Si2O5)(OH)4
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H AluniteKAl3(SO4)2(OH)6
H ApatiteCa5(PO4)3(Cl/F/OH)
H Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
H HalloysiteAl2(Si2O5)(OH)4
H ChalcanthiteCuSO4 · 5H2O
H GypsumCaSO4 · 2H2O
H JarositeKFe3+ 3(SO4)2(OH)6
H NatroaluniteNaAl3(SO4)2(OH)6
H Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H MuscoviteKAl2(AlSi3O10)(OH)2
CCarbon
C SideriteFeCO3
C CalciteCaCO3
OOxygen
O K Feldspar (var: Adularia)KAlSi3O8
O QuartzSiO2
O Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
O SideriteFeCO3
O Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
O KaoliniteAl2(Si2O5)(OH)4
O TitaniteCaTi(SiO4)O
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O AluniteKAl3(SO4)2(OH)6
O ZirconZr(SiO4)
O ApatiteCa5(PO4)3(Cl/F/OH)
O MagnetiteFe2+Fe23+O4
O CristobaliteSiO2
O Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
O HalloysiteAl2(Si2O5)(OH)4
O BaryteBaSO4
O ChalcanthiteCuSO4 · 5H2O
O GypsumCaSO4 · 2H2O
O JarositeKFe3+ 3(SO4)2(OH)6
O NatroaluniteNaAl3(SO4)2(OH)6
O PyrolusiteMn4+O2
O HematiteFe2O3
O RutileTiO2
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Hypersthene(Mg,Fe)SiO3
O Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O CalciteCaCO3
O MuscoviteKAl2(AlSi3O10)(OH)2
FFluorine
F ApatiteCa5(PO4)3(Cl/F/OH)
F Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
NaSodium
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Na NatroaluniteNaAl3(SO4)2(OH)6
MgMagnesium
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Mg Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg Hypersthene(Mg,Fe)SiO3
AlAluminium
Al K Feldspar (var: Adularia)KAlSi3O8
Al Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
Al KaoliniteAl2(Si2O5)(OH)4
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al AluniteKAl3(SO4)2(OH)6
Al Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Al HalloysiteAl2(Si2O5)(OH)4
Al NatroaluniteNaAl3(SO4)2(OH)6
Al Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al MuscoviteKAl2(AlSi3O10)(OH)2
SiSilicon
Si K Feldspar (var: Adularia)KAlSi3O8
Si QuartzSiO2
Si Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
Si KaoliniteAl2(Si2O5)(OH)4
Si TitaniteCaTi(SiO4)O
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si ZirconZr(SiO4)
Si CristobaliteSiO2
Si Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Si HalloysiteAl2(Si2O5)(OH)4
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Hypersthene(Mg,Fe)SiO3
Si Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si MuscoviteKAl2(AlSi3O10)(OH)2
PPhosphorus
P ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
S ArsenopyriteFeAsS
S PyriteFeS2
S AcanthiteAg2S
S Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
S PyrargyriteAg3SbS3
S MarcasiteFeS2
S AluniteKAl3(SO4)2(OH)6
S TetrahedriteCu6Cu4(X)2Sb4S13
S ChalcopyriteCuFeS2
S SphaleriteZnS
S GalenaPbS
S BaryteBaSO4
S ChalcanthiteCuSO4 · 5H2O
S GypsumCaSO4 · 2H2O
S JarositeKFe3+ 3(SO4)2(OH)6
S NatroaluniteNaAl3(SO4)2(OH)6
S BorniteCu5FeS4
S PyrrhotiteFe7S8
S SulphurS8
ClChlorine
Cl ApatiteCa5(PO4)3(Cl/F/OH)
Cl Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
KPotassium
K K Feldspar (var: Adularia)KAlSi3O8
K Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
K AluniteKAl3(SO4)2(OH)6
K Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
K JarositeKFe3+ 3(SO4)2(OH)6
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca TitaniteCaTi(SiO4)O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Ca GypsumCaSO4 · 2H2O
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca CalciteCaCO3
TiTitanium
Ti TitaniteCaTi(SiO4)O
Ti RutileTiO2
Ti Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
MnManganese
Mn PyrolusiteMn4+O2
FeIron
Fe ArsenopyriteFeAsS
Fe PyriteFeS2
Fe SideriteFeCO3
Fe MarcasiteFeS2
Fe ChalcopyriteCuFeS2
Fe MagnetiteFe2+Fe23+O4
Fe Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe BorniteCu5FeS4
Fe PyrrhotiteFe7S8
Fe HematiteFe2O3
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe Hypersthene(Mg,Fe)SiO3
CuCopper
Cu Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Cu TetrahedriteCu6Cu4(X)2Sb4S13
Cu ChalcopyriteCuFeS2
Cu ChalcanthiteCuSO4 · 5H2O
Cu BorniteCu5FeS4
ZnZinc
Zn SphaleriteZnS
AsArsenic
As ArsenopyriteFeAsS
As Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
ZrZirconium
Zr ZirconZr(SiO4)
AgSilver
Ag Electrum(Au, Ag)
Ag AcanthiteAg2S
Ag Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Ag PyrargyriteAg3SbS3
Ag SilverAg
SbAntimony
Sb Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Sb PyrargyriteAg3SbS3
Sb TetrahedriteCu6Cu4(X)2Sb4S13
BaBarium
Ba BaryteBaSO4
AuGold
Au GoldAu
Au Electrum(Au, Ag)
PbLead
Pb GalenaPbS

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Main, J.V. (1979) Precious metal bearing veins at Maratoto-Wentworth area Hauraki Goldfield New Zealand, New Zealand Journal of Geology and Geophysics, 22:1, 41-51.
Whitaker, A.H., Alspach, P.A. (1999) Monitoring of Hochstetters frog (Leiopelma hochstetteri) population near Golden Cross Mine Waitekauri Valley Coromandel, Science for Conservation 130, New Zealand Department of Conservation, Wellington.
Kelsey, J. (1999) Reclaiming the Future: New Zealand and the global economy, University of Toronto Press, pp 176-178.
Simmons, S.F., Arehart, G., Simpson, M.P., Mauk, J.L. (2000) Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand. Economic Geology 95:1, 99-112.
Simmons, S.F., Mauk, J.L., Simpson, M.P. (2000) The mineral products of boiling in the Golden Cross epithermal deposit. New Zealand Minerals & Mining Conference Proceedings, 29-31 October 2000.
Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Francis, D. (2002) The Golden Cross Project mill closure mine rehabilitation and drainage contract, AusIMM New Zealand Branch Annual Conference- 150 years of mining.
Begbie, M.J., Spörli, K.B., Maul, J.L. (2007) Structural Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology,102:5, 873-892.
URS New Zealand Ltd (2016) Golden Cross Mine. Post Closure Residual Risk Assessment, 12 August 2016.

External Links


Other Regions, Features and Areas containg this locality

Australian PlateTectonic Plate
New Zealand

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2019年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2019.12.9 18:42:07 Page generated: 2019.10.12 14:58:53
Go to top of page