登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Jerseyi
Regional Level Types
JerseyCrown Dependency

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
04894550017055962077050.jpg
View of the Saint Mary collapse crater, ca. 1908.

Devil's Hole, St Mary, Jersey
Neighbouring regions:
Largest Settlements:
PlacePopulation
Saint Helier28,000 (2018)
Mindat Locality ID:
53100
Long-form identifier:
mindat:1:2:53100:8
GUID (UUID V4):
bfb0d39d-78ed-4de9-9b11-7fb92d5a1e24
Other/historical names associated with this locality:
Bailiwick of Jersey
Other Languages:
French:
Jersey
German:
Jersey
Italian:
Isola di Jersey
Russian:
Джерси
Simplified Chinese:
澤西
Spanish:
Jersey
Achinese:
Jersey
Afrikaans:
Jersey
Albanian:
Jersey
Alemannic:
Jersey
Amharic:
ጀርዚ
Anglo-Saxon:
Cēsarēa
Arabic:
جيرزي
Aragonese:
Jèrri
Armenian:
Ջերսի
Asturian:
Xerséi
Azeri:
Cersi
Basque:
Jersey
Bavarian:
Jersey
Belarusian:
Джэрсi
Belarusian (Tarashkevitsa):
Джэрзі
Bengali:
জার্সি
Bishnupriya Manipuri:
জার্সি
Bosnian:
Jersey
Breton:
Jerzenez
Bulgarian:
Джърси
Burmese:
ဂျာစီ
Catalan:
Jersey
Cherokee:
ᏨᎵᏏ
Classical Chinese:
澤西島
Cornish:
Jersi
Crimean Tatar (Latin):
Cersi
Croatian:
Jersey
Czech:
Jersey
Danish:
Jersey
Dutch:
Jersey
Dutch Low Saxon:
Jersey
Dzongkha:
ཇེར་སི
Esperanto:
Ĵerzejo
Estonian:
Jersey
Ewe:
Dzɛse nutome
Faroese:
Jersey
Farsi/Persian:
جرزی
Finnish:
Jersey
Franco-Provençal:
Jèrzê
Galician:
Jersey
Georgian:
ჯერსი
Greek:
Υερσέη
Gujarati:
જર્સી
Hausa:
Jersey
Hebrew:
ג'רזי
Hindi:
जर्सी
Hungarian:
Jersey
Icelandic:
Jersey
Ido:
Jersey
Indonesian:
Jersey
Interlingue:
Jersey
Irish Gaelic:
Geirsí
Japanese:
ジャージー
Javanese:
Jersey
Kalmyk:
Җерсин Арл
Kannada:
ಜರ್ಸಿ
Kashmiri:
جٔرسی
Kazakh (Cyrillic Script):
Джерси
Khmer:
ជឺស៊ី
Kinyarwanda:
Jersey
Korean:
저지섬
Kyrgyz:
Жерси
Lao:
ເຈີຊີ
Latin:
Caesarea Insula
Latvian:
Džērsija
Ligurian:
Jersey
Limburgian:
Jersey
Lingua Franca Nova:
Jersi
Lithuanian:
Džersis
Low Saxon/Low German:
Jersey
Macedonian:
Џерси
Malay:
Jersey
Malayalam:
ജേഴ്സി
Maltese:
Jersey
Manx:
Jersee
Maori:
Tōrehe
Marathi:
जर्सी
Mazanderani:
جرسی
Min Dong Chinese:
Jersey
Minnan / Hokkien-Taiwanese:
Jersey
Mongolian:
Жерси
Narom:
Jèrri
Nepali:
जर्सी
Northern Frisian:
Jersey
Norwegian:
Jersey
Norwegian (Nynorsk):
Jersey
Novial:
Jersey
Occitan:
Jersey
Odia:
ଜର୍ସି
Ossetian:
Джерси
Polish:
Jersey
Portuguese:
Jersey
Punjabi:
ਜਰਸੀ
Ripuarian:
Jööseh
Romanian:
Jersey
Scots:
Jersey
Scottish Gaelic:
Jersey
Serbian:
Џерзи
Serbo-Croatian:
Jersey
Sinhalese:
ජර්සි
Slovak:
Jersey
Slovenian:
Jersey
South Azerbaijani:
جرسی
Sundanese:
Jersey
Swahili:
Jersey
Swedish:
Jersey
Tagalog:
Jersey
Tamil:
யேர்சி
Tatar:
Җерси
Telugu:
జెర్సీ
Thai:
เจอร์ซีย์
Tongan:
Selusī
Traditional Chinese:
澤西
Turkish:
Jersey
Ukrainian:
Джерсі
Urdu:
جرزی
Vietnamese:
Jersey
Waray:
Jersey
Welsh:
Jersey
West Frisian:
Jersey
Western Punjabi:
جرسی
Wu Chinese:
杰塞岛
Yoruba:
Jersey
Zazaki:
Jersey
Zulu:
isi-Jersey


Jersey, officially the Bailiwick of Jersey (French: Bailliage de Jersey; Jèrriais: Bailliage dé Jèrri), is a British Crown dependency near the coast of Normandy, France. It is the second-closest of the Channel Islands to France, after Alderney.

Geology:
"Although the island has produced very little ore the quarrying industry has always been important. Metalliferous mining ventures have included iron ore at La Corbière, molybdenite at L' Etacq, copper at La Moye and, most seriously, lead-silver at Le Pulec.
The geology of Jersey is shown in Figure 4. The Cambro-Ordovician Rozel Conglomerate unconformably overlies the Jersey Volcanic Group, a series of andesites overlain by rhyolites. Beneath the Jersey Volcanic Group is the Brioverian Jersey Shale Formation. These rocks have been intruded by Cadomian igneous rocks, namely the Northwest Complex. The rocks are calc-alkaline and range from granite to diorite. Mineralization has been reported in all of the main divisions except for the Rozel Conglomerate (Bishop and Bisson 1989).
The Jersey Shale Formation, comprising mudstones and conglomerates but mainly siltstones and sandstones, has suffered chlorite grade metamorphism. Locally the formation is host to minor mineralization. At Meadow Banks, in the German Hospital Tunnels, calcareous mudstones are cut by galena, sphalerite, pyrite, marcasite, chalcopyrite and calcite veinlets or by quartz veins carrying chalcopyrite, pyrite, sphalerite, galena and traces of bournonite. Nearby lenses of disseminated, banded pyrite are present in a highly altered acidic dyke that cuts the metasediments; in this assemblage pyrite, chalcopyrite, galena and sphalerite are accompanied by trace amounts of molybdenite and pyrrhotite (Ixer 1980, 1990). Other lenses in the dyke are composed of quartz and chalcopyrite (Mourant pers comm 1988).

More substantial mineralization is hosted by the Jersey Shale Formation at Le Pulec, a small bay on the northwest coast, close to the junction of the shales and the Northwest Granite. In 1871 three sphalerite-galena-carbonate veins were discovered on the foreshore. The veins cut the shales and were of variable length; the longest (Lode No. 1) had a trend of 300o and was approximately 180m long, whilst the other two were less than 100m long with trends of 300o (Lode No. 2) and 275o (Lode No. 3). The width of all three was between 0.5 - 2.0m. Good silver values for the galena were reported by Williams (1871) and independently by Ogier (1871). Intermittent attempts were made to mine the veins (between high tides) from 1872 to 1876 when mining was abandoned (Mourant & Warren 1934, Howell 1977).

Two of the lodes are exposed (Nos. 1 & 3) and their mineralogy and petrography have been described by Ixer & Stanley (1980) and Stanley & Ixer (1982). At Le Pulec the Brioverian shales close to the granite contact have been bleached and silicified and carry sulphide-arsenide mineralization, namely early pyrrhotite (now altered to tabular pyrite and marcasite), pyrite and finally arsenopyrite with minor chalcopyrite, galena, sphalerite and molybdenite. Cross-cutting this mineralization are the three veins, at least one of which is associated with a highly altered basic dyke (Howell 1977). Within the limited sampling allowed, lodes 1 and 3 are the same and are composed of polyphase mineralization. The sequence is:-

1) ferroan dolomite and iron-poor sphalerite

2) a number of generations of quartz-minor chlorite plus galena, sphalerite, chalcopyrite, cubanite, tetrahedrite, bournonite, native antimony and traces of silver sulphosalts.

3) ferroan calcite, stibnite and other antimony sulphosalts.

Analyses of the tetrahedrite show it to have been the main silver carrier with 6 - 20 wt % Ag and rarely up to 40 wt %. Potassium-Argon dating of the altered basalt next to lode No. 1 has given 424±4 Ma, a Silurian age (Ineson per comm. 1982).

Very minor amounts of mineralization are present in the overlying Jersey Volcanic Group. Sometime in the middle of the nineteenth century at West Mount on the outskirts of St Helier, an audit was driven into green-stained tuffs and agglomerates, close to a dolerite intrusion (Mourant & Warren 1934). Similar mineralization has been noted from Bouley Bay where the green-stained Middle Bouley Ignimbrite has very fine quartz net-veining with chalcopyrite, bornite-chalcopyrite intergrowths ("idaite") plus minor pyrite and enargite. Secondary alteration to blaubleibender-covelline, covelline, malachite, limonite and cuprite is responsible for the colouration of the outcrops.

The Southwest Granite (dated 553 ± 12Ma, Adams 1976, Bishop & Bisson 1989) carries minor quartz-sulphide joint infills and was host to nineteenth century trial diggings at La Corbière for iron ore, whilst at La Moye a copper vein was discovered in 1843 but not exploited (Mourant & Warren 1934).

At La Corbière quartz-chlorite veins carry "massive" magnetite-haematite-rutile followed by later haematite, pyrrhotite, pyrite, chalcopyrite, galena and sphalerite. At L'Ouaisné Bay thin joint infills are composed of quartz-calcite-fluorite-chlorite with haematite, sphalerite, galena and minor magnetite, rutile, pyrite and a little chalcopyrite.

At La Moye the granite/aplogranite is net-veined by bornite, bornite-chalcopyrite intergrowths ("idaite") and tetrahedrite-bearing quartz veinlets. Extensive alteration is responsible for the malachite and azurite staining (Ixer 1988).

The Northwest Granite of the Northwest Igneous Complex is the largest and youngest of the three granites and is dated at 480Ma. In joints at L'Etacq Quarry the granite carries quartz-calcite veins with molybdenite (which may have been collected and sold to collectors), pyrite, chalcopyrite, sphalerite, marcasite, arsenopyrite, galena, pyrrhotite, bournonite, tetrahedrite and stannite (Ixer 1980) plus silver-rich cosalite and boulangerite (Mourant 1985). Molybdenite was collected from the china-stone quarries at Handois. Elsewhere in the granite, quartz veins have pyrite, marcasite, chalcopyrite, sphalerite, molybdenite, bournonite and native antimony as at Gigoulande Quarry, or carbonate veins carrying arsenopyrite, pyrite, sphalerite, galena plus minor chalcopyrite, marcasite, haematite, pyrrhotite, tetrahedrite, magnetite and bornite as at Douet de la Mer.

The Southwest Igneous Complex has no recorded mineralization, but carbonate veinlets cutting the Fort Regent Granophyre carry haematite, chalcopyrite and marcasite, whereas in Queens Valley quartz-carbonate veins enclose chalcopyrite-bornite-tetrahedrite intergrowths with minor quantities of galena, sphalerite and pyrite.

An island-wide synthesis of these mineral occurrences has been given by Ixer (1980) who suggested a number of ore associations, namely:

1) porphyry-style copper mineralization in the Jersey Volcanic Group (Bouley Bay)

2) quartz-molybdenite-base metal sulphide pegmatitic veins followed by quartz-carbonate-base metal sulphide hydrothermal veins, both cutting granites

3) unclassified carbonate-sulphide veinlets in the Jersey Shale Formation

4) Le Pulec

With the advantage of additional material, both from Jersey and the other islands, the mineralization can be simplified.

Polymetallic mineralization associated with granites has the following sequence: magnetite/haematite, pyrrhotite, pyrite, arsenopyrite, base metal sulphides and finally antimony-bearing phases. Tin and tungsten minerals are noticeably scarse on the island, only trace amounts of stannite have been positively identified. The youngest Northwest Granite appears to be more evolved than the other granites, with greater amounts of molybdenum, antimony, silver, tin and bismuth in its associated mineralization.

All of the mineralization in the Jersey Shale formation (Le Pulec and the German Underground Tunnels) is similar. Briden et al (19892) have suggested, on geophysical grounds, that the Northwest and Southwest granites are joined at depth and that the Jersey Shale Formation is only 0.25km thick. If this is so then the base metal, minor antimony, with or without silver mineralization, could also be a manifestation of the granites.

However, the presence of post-Brioverian dykes at both sites of mineralization is worth noting (dykes are also recorded close to the mineralization at West Mount and at Douet de la Mer) as an alternative/additional factor in the ore formation process. The dykes are too small to be the direct cause of mineralization and may just have used the same fractures as the mineralising fluids. The chemistry of the dykes, which is very different from that of the metasediments, may have promoted mineralization. The regional heat source responsible for the dykes may also be responsible for localized mineralising systems."
(http://www.rosiehardman.co.uk/taxev.htm)

Jersey was part of the Duchy of Normandy, whose dukes went on to become kings of England from 1066. After Normandy was lost by the kings of England in the 13th century, and the ducal title surrendered to France, Jersey and the other Channel Islands remained attached to the English crown.

The bailiwick consists of the island of Jersey, the largest of the Channel Islands, along with surrounding uninhabited islands and rocks collectively named Les Dirouilles, Les Écréhous, Les Minquiers, Les Pierres de Lecq, and other reefs. Although the bailiwicks of Jersey and Guernsey are often referred to collectively as the Channel Islands, the "Channel Islands" are not a constitutional or political unit. Jersey has a separate relationship to the Crown from the other Crown dependencies of Guernsey and the Isle of Man, although all are held by the monarch of the United Kingdom.

Jersey is a self-governing parliamentary democracy under a constitutional monarchy, with its own financial, legal and judicial systems, and the power of self-determination. The Lieutenant Governor on the island is the personal representative of the Queen.

Jersey is not part of the United Kingdom and has an international identity separate from that of the UK, but the UK is constitutionally responsible for the defence of Jersey. The definition of United Kingdom in the British Nationality Act 1981 is interpreted as including the UK and the Islands together. The European Commission confirmed in a written reply to the European Parliament in 2003 that Jersey was within the Union as a European Territory for whose external relationships the UK is responsible. Jersey was not fully part of the European Union but had a special relationship with it, notably being treated as within the European Community for the purposes of free trade in goods.

British cultural influence on the island is evident in its use of English as the main language and the British pound as its primary currency, even if some people still speak or understand Jèrriais, the local form of the Norman language, and place names with French or Norman origins abound. Additional British cultural commonalities include driving on the left, access to the BBC and ITV regions, a school curriculum following that of England, and the popularity of British sports, including cricket.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

54 valid minerals. 3 erroneous literature entries.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Actinolite
Formula: ◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Aegirine
Formula: NaFe3+Si2O6
'Alkali Feldspar'
'Allanite Group'
Formula: (A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
'Amphibole Supergroup'
Formula: AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Anatase
Formula: TiO2
Andalusite
Formula: Al2(SiO4)O
Andradite
Formula: Ca3Fe3+2(SiO4)3
Anglesite
Formula: PbSO4
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Antimony
Formula: Sb
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Arfvedsonite
Formula: [Na][Na2][Fe2+4Fe3+]Si8O22(OH)2
Description: Ti-bearing arfvedsonite.
Arsenopyrite
Formula: FeAsS
'Asbestos'
Atacamite
Formula: Cu2(OH)3Cl
Baryte
Formula: BaSO4
'Bindheimite'
Formula: Pb2Sb2O6O
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Bornite
Formula: Cu5FeS4
Boulangerite
Formula: Pb5Sb4S11
Bournonite
Formula: PbCuSbS3
Calcite
Formula: CaCO3
Localities: Reported from at least 7 localities in this region.
Cerussite
Formula: PbCO3
Chalcocite
Formula: Cu2S
Chalcopyrite
Formula: CuFeS2
'Chlorite Group'
Localities: Reported from at least 8 localities in this region.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Clinochlore var. Pennine
Formula: Mg5Al(AlSi3O10)(OH)8
Cosalite
Formula: Pb2Bi2S5
Covellite
Formula: CuS
Cubanite
Formula: CuFe2S3
Diopside
Formula: CaMgSi2O6
Diopside var. Salite
Dolomite
Formula: CaMg(CO3)2
Dolomite var. Iron-bearing Dolomite
Formula: Ca(Mg,Fe)(CO3)2
Epidote
Formula: (CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Localities: Reported from at least 7 localities in this region.
Epistilbite
Formula: CaAl2Si6O16 · 5H2O
Epsomite
Formula: MgSO4 · 7H2O
'Fayalite-Forsterite Series'
Description: Altered into quartz, magnesioarfvedsonite and hematite.
'Feldspar Group'
Fluorite
Formula: CaF2
Galena
Formula: PbS
'Garnet Group'
Formula: X3Z2(SiO4)3
Gypsum
Formula: CaSO4 · 2H2O
Hematite
Formula: Fe2O3
'Hornblende Root Name Group'
Formula: ◻Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
Ilmenite
Formula: Fe2+TiO3
Jamesonite
Formula: Pb4FeSb6S14
Kaersutite
Formula: NaCa2(Mg3AlTi4+)(Si6Al2)O22O2
'K Feldspar'
'K Feldspar var. Adularia'
Formula: KAlSi3O8
'Limonite'
Maghemite
Formula: (Fe3+0.670.33)Fe3+2O4
Magnesio-arfvedsonite
Formula: {Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
Magnetite
Formula: Fe2+Fe3+2O4
Malachite
Formula: Cu2(CO3)(OH)2
Marcasite
Formula: FeS2
'Mica Group'
Molybdenite
Formula: MoS2
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Muscovite var. Gilbertite
Formula: KAl2(AlSi3O10)(OH)2
Orthoclase
Formula: K(AlSi3O8)
Localities: Reported from at least 6 localities in this region.
Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
Prehnite
Formula: Ca2Al2Si3O10(OH)2
Pyrite
Formula: FeS2
'Pyroxene Group'
Formula: ADSi2O6
Pyrrhotite
Formula: Fe1-xS
Quartz
Formula: SiO2
Localities: Reported from at least 11 localities in this region.
Quartz var. Chalcedony
Formula: SiO2
'Rhombohedral Carbonate'
Formula: (Ca/Mg/Fe/Mn etc)CO3
Rutile
Formula: TiO2
Siderite
Formula: FeCO3
Smithsonite
Formula: ZnCO3
Sphalerite
Formula: ZnS
Stibnite
Formula: Sb2S3
Locality: L'Etacq Quarry, St Ouen, Jersey - erroneously reported
'Tetrahedrite Subgroup'
Formula: Cu6(Cu4C2+2)Sb4S12S
Titanite
Formula: CaTi(SiO4)O
Wollastonite
Formula: Ca3(Si3O9)
Locality: Hermitage, St Helier, Jersey - erroneously reported
Description: Was prehnite
Wulfenite
Formula: Pb(MoO4)
Zircon
Formula: Zr(SiO4)

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Antimony1.CA.05Sb
Group 2 - Sulphides and Sulfosalts
Chalcocite2.BA.05Cu2S
Bornite2.BA.15Cu5FeS4
Covellite2.CA.05aCuS
Sphalerite2.CB.05aZnS
Chalcopyrite2.CB.10aCuFeS2
Cubanite2.CB.55aCuFe2S3
Pyrrhotite2.CC.10Fe1-xS
Galena2.CD.10PbS
Stibnite ?2.DB.05Sb2S3
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Marcasite2.EB.10aFeS2
Arsenopyrite2.EB.20FeAsS
Bournonite2.GA.50PbCuSbS3
'Tetrahedrite Subgroup'2.GB.05Cu6(Cu4C2+2)Sb4S12S
Jamesonite2.HB.15Pb4FeSb6S14
Boulangerite2.HC.15Pb5Sb4S11
Cosalite2.JB.10Pb2Bi2S5
Group 3 - Halides
Fluorite3.AB.25CaF2
Atacamite3.DA.10aCu2(OH)3Cl
Group 4 - Oxides and Hydroxides
Magnetite4.BB.05Fe2+Fe3+2O4
Maghemite4.BB.15(Fe3+0.670.33)Fe3+2O4
Ilmenite4.CB.05Fe2+TiO3
Hematite4.CB.05Fe2O3
Quartz4.DA.05SiO2
var. Chalcedony4.DA.05SiO2
Rutile4.DB.05TiO2
Anatase4.DD.05TiO2
'Bindheimite'4.DH.20Pb2Sb2O6O
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Siderite5.AB.05FeCO3
Smithsonite5.AB.05ZnCO3
Dolomite
var. Iron-bearing Dolomite
5.AB.10Ca(Mg,Fe)(CO3)2
5.AB.10CaMg(CO3)2
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Cerussite5.AB.15PbCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anglesite7.AD.35PbSO4
Baryte7.AD.35BaSO4
Epsomite7.CB.40MgSO4 · 7H2O
Gypsum7.CD.40CaSO4 · 2H2O
Wulfenite7.GA.05Pb(MoO4)
Group 9 - Silicates
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Zircon9.AD.30Zr(SiO4)
Andalusite9.AF.10Al2(SiO4)O
Titanite9.AG.15CaTi(SiO4)O
Epidote9.BG.05a(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Diopside9.DA.15CaMgSi2O6
var. Salite9.DA.15CaMgSi2O6
Aegirine9.DA.25NaFe3+Si2O6
Actinolite9.DE.10◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Kaersutite9.DE.15NaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Arfvedsonite9.DE.25[Na][Na2][Fe2+4Fe3+]Si8O22(OH)2
Magnesio-arfvedsonite9.DE.25{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
Wollastonite ?9.DG.05Ca3(Si3O9)
Prehnite9.DP.20Ca2Al2Si3O10(OH)2
Muscovite
var. Gilbertite
9.EC.15KAl2(AlSi3O10)(OH)2
9.EC.15KAl2(AlSi3O10)(OH)2
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Clinochlore
var. Pennine
9.EC.55Mg5Al(AlSi3O10)(OH)8
9.EC.55Mg5Al(AlSi3O10)(OH)8
Orthoclase9.FA.30K(AlSi3O8)
Epistilbite ?9.GD.45CaAl2Si6O16 · 5H2O
Unclassified
'K Feldspar
var. Adularia'
-KAlSi3O8
'Allanite Group'-(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Alkali Feldspar'-
'Amphibole Supergroup'-AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Garnet Group'-X3Z2(SiO4)3
'Pyroxene Group'-ADSi2O6
'K Feldspar'-
'Fayalite-Forsterite Series'-
'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
'Hornblende Root Name Group'-◻Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
'Limonite'-
'Mica Group'-
'Asbestos'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
'Chlorite Group'-
'Feldspar Group'-
'Rhombohedral Carbonate'-(Ca/Mg/Fe/Mn etc)CO3

List of minerals for each chemical element

HHydrogen
H Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
H Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H Arfvedsonite[Na][Na2][Fe42+Fe3+]Si8O22(OH)2
H AtacamiteCu2(OH)3Cl
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
H EpistilbiteCaAl2Si6O16 · 5H2O
H EpsomiteMgSO4 · 7H2O
H Muscovite var. GilbertiteKAl2(AlSi3O10)(OH)2
H GypsumCaSO4 · 2H2O
H Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
H MalachiteCu2(CO3)(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H PhlogopiteKMg3(AlSi3O10)(OH)2
H PrehniteCa2Al2Si3O10(OH)2
H Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
H Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
H ApatiteCa5(PO4)3(Cl/F/OH)
H Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C CalciteCaCO3
C CerussitePbCO3
C DolomiteCaMg(CO3)2
C MalachiteCu2(CO3)(OH)2
C SideriteFeCO3
C SmithsoniteZnCO3
C Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
C Rhombohedral Carbonate(Ca/Mg/Fe/Mn etc)CO3
OOxygen
O Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
O K Feldspar var. AdulariaKAlSi3O8
O AegirineNaFe3+Si2O6
O Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O AnataseTiO2
O AndalusiteAl2(SiO4)O
O AndraditeCa3Fe23+(SiO4)3
O AnglesitePbSO4
O AnkeriteCa(Fe2+,Mg)(CO3)2
O Arfvedsonite[Na][Na2][Fe42+Fe3+]Si8O22(OH)2
O AtacamiteCu2(OH)3Cl
O BaryteBaSO4
O BindheimitePb2Sb2O6O
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
O CalciteCaCO3
O CerussitePbCO3
O Quartz var. ChalcedonySiO2
O ClinochloreMg5Al(AlSi3O10)(OH)8
O DiopsideCaMgSi2O6
O DolomiteCaMg(CO3)2
O Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
O EpistilbiteCaAl2Si6O16 · 5H2O
O EpsomiteMgSO4 · 7H2O
O Muscovite var. GilbertiteKAl2(AlSi3O10)(OH)2
O GypsumCaSO4 · 2H2O
O HematiteFe2O3
O IlmeniteFe2+TiO3
O KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
O Maghemite(Fe3+0.670.33)Fe23+O4
O Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O MuscoviteKAl2(AlSi3O10)(OH)2
O OrthoclaseK(AlSi3O8)
O PhlogopiteKMg3(AlSi3O10)(OH)2
O PrehniteCa2Al2Si3O10(OH)2
O QuartzSiO2
O RutileTiO2
O SideriteFeCO3
O SmithsoniteZnCO3
O TitaniteCaTi(SiO4)O
O WulfenitePb(MoO4)
O WollastoniteCa3(Si3O9)
O ZirconZr(SiO4)
O Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
O Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
O Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
O Pyroxene GroupADSi2O6
O Garnet GroupX3Z2(SiO4)3
O Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
O ApatiteCa5(PO4)3(Cl/F/OH)
O Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
O Rhombohedral Carbonate(Ca/Mg/Fe/Mn etc)CO3
FFluorine
F Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
F FluoriteCaF2
F Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
F ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Na AegirineNaFe3+Si2O6
Na Arfvedsonite[Na][Na2][Fe42+Fe3+]Si8O22(OH)2
Na KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Na Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
Na Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
MgMagnesium
Mg Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg DiopsideCaMgSi2O6
Mg DolomiteCaMg(CO3)2
Mg EpsomiteMgSO4 · 7H2O
Mg KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Mg Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
Mg PhlogopiteKMg3(AlSi3O10)(OH)2
Mg Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
Mg Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
Mg Rhombohedral Carbonate(Ca/Mg/Fe/Mn etc)CO3
AlAluminium
Al K Feldspar var. AdulariaKAlSi3O8
Al Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al AndalusiteAl2(SiO4)O
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Al EpistilbiteCaAl2Si6O16 · 5H2O
Al Muscovite var. GilbertiteKAl2(AlSi3O10)(OH)2
Al KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al OrthoclaseK(AlSi3O8)
Al PhlogopiteKMg3(AlSi3O10)(OH)2
Al PrehniteCa2Al2Si3O10(OH)2
Al Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Al Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
Al Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
SiSilicon
Si Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Si K Feldspar var. AdulariaKAlSi3O8
Si AegirineNaFe3+Si2O6
Si Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si AndalusiteAl2(SiO4)O
Si AndraditeCa3Fe23+(SiO4)3
Si Arfvedsonite[Na][Na2][Fe42+Fe3+]Si8O22(OH)2
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Si Quartz var. ChalcedonySiO2
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si DiopsideCaMgSi2O6
Si Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Si EpistilbiteCaAl2Si6O16 · 5H2O
Si Muscovite var. GilbertiteKAl2(AlSi3O10)(OH)2
Si KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Si Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si OrthoclaseK(AlSi3O8)
Si PhlogopiteKMg3(AlSi3O10)(OH)2
Si PrehniteCa2Al2Si3O10(OH)2
Si QuartzSiO2
Si TitaniteCaTi(SiO4)O
Si WollastoniteCa3(Si3O9)
Si ZirconZr(SiO4)
Si Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Si Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
Si Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Si Pyroxene GroupADSi2O6
Si Garnet GroupX3Z2(SiO4)3
Si Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
PPhosphorus
P ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
S AnglesitePbSO4
S ArsenopyriteFeAsS
S BaryteBaSO4
S BorniteCu5FeS4
S BoulangeritePb5Sb4S11
S BournonitePbCuSbS3
S ChalcopyriteCuFeS2
S ChalcociteCu2S
S CosalitePb2Bi2S5
S CovelliteCuS
S CubaniteCuFe2S3
S EpsomiteMgSO4 · 7H2O
S GalenaPbS
S GypsumCaSO4 · 2H2O
S JamesonitePb4FeSb6S14
S MarcasiteFeS2
S MolybdeniteMoS2
S PyriteFeS2
S PyrrhotiteFe1-xS
S SphaleriteZnS
S StibniteSb2S3
S Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
ClChlorine
Cl Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Cl AtacamiteCu2(OH)3Cl
Cl Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Cl ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
K K Feldspar var. AdulariaKAlSi3O8
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
K Muscovite var. GilbertiteKAl2(AlSi3O10)(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
K OrthoclaseK(AlSi3O8)
K PhlogopiteKMg3(AlSi3O10)(OH)2
CaCalcium
Ca Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Ca AndraditeCa3Fe23+(SiO4)3
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca CalciteCaCO3
Ca DiopsideCaMgSi2O6
Ca DolomiteCaMg(CO3)2
Ca Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Ca EpistilbiteCaAl2Si6O16 · 5H2O
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Ca PrehniteCa2Al2Si3O10(OH)2
Ca TitaniteCaTi(SiO4)O
Ca WollastoniteCa3(Si3O9)
Ca Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Ca Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Ca Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca Rhombohedral Carbonate(Ca/Mg/Fe/Mn etc)CO3
TiTitanium
Ti Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti AnataseTiO2
Ti BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Ti IlmeniteFe2+TiO3
Ti KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Ti RutileTiO2
Ti TitaniteCaTi(SiO4)O
MnManganese
Mn Rhombohedral Carbonate(Ca/Mg/Fe/Mn etc)CO3
FeIron
Fe Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Fe AegirineNaFe3+Si2O6
Fe AndraditeCa3Fe23+(SiO4)3
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ArsenopyriteFeAsS
Fe Arfvedsonite[Na][Na2][Fe42+Fe3+]Si8O22(OH)2
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe CubaniteCuFe2S3
Fe Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Fe HematiteFe2O3
Fe IlmeniteFe2+TiO3
Fe JamesonitePb4FeSb6S14
Fe Maghemite(Fe3+0.670.33)Fe23+O4
Fe Magnesio-arfvedsonite{Na}{Na2}{Mg4Fe3+}(Si8O22)(OH)2
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe PyriteFeS2
Fe PyrrhotiteFe1-xS
Fe SideriteFeCO3
Fe Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
Fe Rhombohedral Carbonate(Ca/Mg/Fe/Mn etc)CO3
CuCopper
Cu AtacamiteCu2(OH)3Cl
Cu BorniteCu5FeS4
Cu BournonitePbCuSbS3
Cu ChalcopyriteCuFeS2
Cu ChalcociteCu2S
Cu CovelliteCuS
Cu CubaniteCuFe2S3
Cu MalachiteCu2(CO3)(OH)2
Cu Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
ZnZinc
Zn SmithsoniteZnCO3
Zn SphaleriteZnS
AsArsenic
As ArsenopyriteFeAsS
ZrZirconium
Zr ZirconZr(SiO4)
MoMolybdenum
Mo MolybdeniteMoS2
Mo WulfenitePb(MoO4)
SbAntimony
Sb AntimonySb
Sb BindheimitePb2Sb2O6O
Sb BoulangeritePb5Sb4S11
Sb BournonitePbCuSbS3
Sb JamesonitePb4FeSb6S14
Sb StibniteSb2S3
Sb Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
BaBarium
Ba BaryteBaSO4
PbLead
Pb AnglesitePbSO4
Pb BindheimitePb2Sb2O6O
Pb BoulangeritePb5Sb4S11
Pb BournonitePbCuSbS3
Pb CerussitePbCO3
Pb CosalitePb2Bi2S5
Pb GalenaPbS
Pb JamesonitePb4FeSb6S14
Pb WulfenitePb(MoO4)
BiBismuth
Bi CosalitePb2Bi2S5

Fossils

There are 1 fossil localities from the PaleoBioDB database within this region.

BETA TEST - These data are provided on an experimental basis and are taken from external databases. Mindat.org has no control currently over the accuracy of these data.

Occurrences1
Youngest Fossil Listed
Oldest Fossil Listed0.01 Ma (Pleistocene)
Fossils from RegionClick here to show the list.
Accepted NameHierarchy Age
Pinguinus impennis
species
Animalia : Chordata : Aves : Charadriiformes : Alcidae : Pinguinus : Pinguinus impennis0.0117 - 0 Ma
Quaternary
Fossil LocalitiesClick to show 1 fossil locality

Other Databases

Wikipedia:https://en.wikipedia.org/wiki/Jersey
Wikidata ID:Q785
GeoNames ID:3042142

Localities in this Region

Other Regions, Features and Areas that Intersect

Channel IslandsGroup of Islands
Eurasian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
矿物 and/or 产地  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.4.23 14:01:24 Page updated: 2024.4.5 18:13:08
Go to top of page