登录注册
Quick Links : Mindat手册The Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral MuseumsClubs & Organizations矿物展及活动The Mindat目录表设备设置The Mineral Quiz
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Photography

Chandlers Mill Quarry, Newport, Sullivan County, New Hampshire, USAi
Regional Level Types
Chandlers Mill QuarryQuarry
NewportMine
Sullivan CountyCounty
New HampshireState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
43° 21' 28'' North , 72° 15' 8'' West
Latitude & Longitude (decimal):
Type:
Nearest Settlements:
PlacePopulationDistance
Newport4,769 (2017)6.4km
Unity1,630 (2017)7.1km
Claremont12,984 (2017)7.9km
Goshen789 (2017)10.5km
Croydon704 (2017)12.6km
Nearest Clubs:
Local clubs are the best way to get access to collecting localities
ClubLocationDistance
Keene Mineral ClubKeene, New Hampshire47km
Mindat Locality ID:
3940
Long-form identifier:
mindat:1:2:3940:9
GUID (UUID V4):
a33ab57e-04ef-47dd-867a-69798ad0ecc8


A mica quarry in granite pegmatite. The George Smith Quarry and Chandlers Mill Quarry were nearly adjacent operations across a small country road from each other. Species list also contains minerals from the host rocks.

Locality is now in the middle of a number of closely spaced residential houses.

There are at least five variations of the name of this location in the mineralogical literature: Chandler Mill, Chandlers Mill, Chandler's Mill, Chandler Mills, and Chandler's Mills. The use of an apostrophe is discouraged in geographic names by many organizations including those of cartographers, geologists, and geographers. Etymologically Chandler Mill is probably the most correct as Ira Chandler owned only one mill. Chandlers Mill is one of the more common variants and without an apostrophe parallels the road name the locality is adjacent to: Chandlers Mill Road. However, on that road, there is a settlement named "Chandlers Mills".

Note: Both the first (1956) and second (1960) editions of Philip Morrill's New Hampshire Mines and Mineral Locations incorrectly place both the George Frank Smith Quarry and the Chandlers Mill Quarry on the wrong sides of the road. Because of the widespread distribution of these field guides, mineral location labels can not be considered undeniably indicating one or the other of these locations. The George Frank Smith Quarry has produced some interesting mineral species, particularly phosphates, but the Chandlers Mill Quarry has by far produced the greater variety of species. (The same references incorrectly give the initials for the nearby George Frank Smith as "G. E. Smith Quarry.)

The following is a synopsis of locality history by Fred E. Davis.

Chandlers Mill history in a nutshell
Newport, Sullivan County, New Hampshire is like many towns – it is surrounded by small villages. To the west of Newport are Kelleyville and Chandlers Mill (L. Cote, Newport Historical Society, pers. comm., 2013). In the mid-1800s, Lewis W. Randall and Carroll W. Peabody built a sawmill called “Randall’s mill” along the banks of the Sugar River about 3.5 miles (5.6 km) west of Newport. Between 1867 and 1870, Ira F. Chandler (1842 - 1918) purchased the mill and operated it for many years; the mill was then called “Chandler’s Mill “ (Wheeler 1879).

I contacted several agencies in Newport concerning the proper spelling of the village since it appears on different maps with a variety of spellings. These include Chandlers Mill, Chandler Mills, Chandler’s Mill, and Chandlers Mills. Cameron et al. (1954) refer to a railroad stop in the mid-1940s called “Chandler Station.” Since the village is an unincorporated populated place, it doesn’t show up on lists of official town names. Consequently, the spelling of the village name is what you choose it to be. Since the name is based on Ira F. Chandler’s sawmill and he had only one, it seems reasonable to call it, as others have, “Chandlers Mill.” This form will be used here when not quoting from other documents.

Ira F. Chandler, a widower with three young children, is found on the June 1870 Federal census of Newport, Sullivan County, New Hampshire. Four months later, he married his second wife Nellie Wright. Two houses away from Ira Chandler on the 1870 census was the residence of Benjamin Marshall with his wife and children. His 18 year old son Allen P. was working as a laborer on their 80-acre farm. This farm is the location of an old, abandoned pegmatite mine that was worked prior to 1936 when it was studied by Carleton A. Chapman (1941, 1942, 1943). It is not known when the pegmatite mine was first worked or by whom, but it was described as “abandoned” by Chapman (1941).

In 1886, Frank P. Smith and his wife Vinnie acquired a small tract of land near the Sugar River from Jane B. Cram, whose husband had died the year before. Frank and Vinnie Smith’s son, George Frank Smith, was born there 24 April 1887; both he and his name are integral to the history of the mines.

Benjamin Marshall died in June 1893. Three years later in 1896, his son Allen sold the 80-acre farm to Frank P. Smith. On the 1900 Federal census, Frank Smith and his family were living on this farm. The 1920 census shows Frank Smith, wife Vinnie, son George F. (working on the family farm) and daughter Florence with her child Franklin C. Parmenter on what was then called Kelleyville Road (now Chandlers Mill Road). Frank P. Smith died the day after Christmas in 1921. In 1922, Frank’s widow Vinnie transferred all of the land to her children including George F. Smith.

In 1924, George F. Smith married Agnes E. Brown. On the 1930 census, George, wife Agnes, two children and George’s mother Vinnie were living on the farm. The 1934 Newport town directory lists George and Agnes living in “Chandler’s Mill.” The 1940 census shows George & family living on the “old back Claremont & Kelleyville Rd through Chandler Mills.”

In 1938, George F. Smith acquired his sister Florence’s share of the 80-acre farm. In 1943, George and Agnes took a lease on the adjacent property between the road and the Sugar River. This same tract of land was then leased to a business partnership consisting of George and Agnes Smith, John G. Sargeant and his son Lawrence E. Sargeant (Sargeant Mining Company operated a mica mine nearby in southeastern Claremont) and William A. Hoy (who worked in a Newport shoe shop with his wife Flora E.); the partnership was doing business as the “Smith Mica Company” of Newport, New Hampshire. As detailed below, the small quarry on this tract of land near the Sugar River was opened by G. F. Smith and worked by Smith Mica Company.

Mine names and mining histories
Mindat showed* only one mine for this Newport locality and previously referred* to it as “George Frank Smith mine (Chandler Mills quarry),” implying that Chandler Mills quarry is a synonym for George Frank Smith mine and is clearly in error. This may be an error carried over from the ambiguity in Morrill (1963), the triphylite description in Meyers and Stewart (1977), or the Newport mines entry in Smith (2005). In spite of the single* Mindat locality, there are in fact two mines about 125 m apart that are not “adjacent” or even "nearly adjacent" as stated on Mindat. The two distinct mines are clearly shown on Plate 2 of Olson (1950), Plate 41 of Cameron et al. (1954), annotated topo maps maintained by the Boston Mineral Club (K. Czaja, pers. comm., 2013), field trip maps for the Boston Mineral Club (BMC 1958, 1963), and a map in Meyers and Stewart (1977). There is also an obvious issue with the misspelled name “G. E. Smith” used on Mindat** and elsewhere.
*recently changed by separating the two mines
**corrected on Mindat

Chandlers Mill mine
The first and oldest mine is up the hill about 160 m south of the Sugar River and is identified as the “Chandler Mills mine” on maps in Olson (1950), Cameron et al. (1954), BMC (1958, 1963), and Meyers and Stewart (1977). The Boston Mineral Club’s annotated topo map also shows “Chandler Mills” and penciled in “up the hill” (K. Czaja, pers. comm., 2013). It is also mentioned in Table 1 (page 8) of Page and Larrabee (1962). The first published account of the locality, Chapman (1941:377), simply refers to it as a "small abandoned pegmatite" that he studied and mapped from 1937 to 1940 (several years prior to the opening of the G. F. Smith mine) (Chapman 1941, 1942; Cameron et al. 1954). Note that it was called Chandlers Mill mine [corrected by moving the “s”] at the time that it was actively being worked, and was visited by E. N. Cameron, J. J. Page et al. in the 1940s as described in Cameron et al. (1954).

Cameron et al. (1954) state that the Chandlers Mill mine was leased by New Hampshire Mica and Mining Co. (Keene, NH) in 1942; it was reopened and worked by them from May 1943 to December 1944.

Both the description of hurlbutite in Mrose (1952) and triphylite crystals in Chapman (1943) use the same latitude/longitude coordinates that correspond to the Chandlers Mill mine but instead use the name “Smith mine.” It is indeed unfortunate that some used the alternate “Smith mine” because of the terrible confusion that results due of the similarity to G. F. Smith mine. In the description for the type locality of hurlbutite, Mrose (1952) states that the name “Smith mine” refers to the land owners George and Agnes Smith. In a description of hurlbutite, Meyers and Stewart (1977) correctly state that the mineral was found at the “Chandler Mills mine” and add the terribly confusing alternate name“Smith” mine in parentheses. It’s certainly true that George and Agnes Smith owned the land, but there was already another nearby mine using the name Smith that had been opened 9 years prior to the publication of Mrose (1952).

G. F. Smith mine
The second and newer mine is about 35 m south of the Sugar River and just east of the Smith residence. It is identified as the “G. F. Smith mine” on maps in Olson (1950), Cameron et al. (1954) , Meyers and Stewart (1977), and in other references like Page and Larrabee (1962). BMC (1958), the first map in BMC (1963) and the Boston Mineral Club’s annotated topo map simply call it the “Smith mine” (an obvious source of confusion since previously mentioned references also use “Smith mine” when referring to Chandlers Mill mine). In fact, the BMC topo map indicates “Smith mine” and penciled in “at the river” (K. Czaja, pers. comm., 2013). Note that it was called G. F. Smith mine at the time that it was actively being worked, and was visited by E. N. Cameron, J. J. Page et al. in the 1940s as described in Cameron et al. (1954).

Cameron et al. (1954) state that George F. Smith personally opened this mine in 1943. Then Smith and his associates (aka Smith Mica Company) worked the mine up to November 1944. After that, it was leased by Newport Mica Co. from December 1944 through February 1945.

BMC (1963) reports the G. F. Smith mine as “barren,” obviously from a mineral collector’s perspective. When Mindat provides separate locality entries for both Chandlers Mill and G. F. Smith mines, I will be posting some interesting minerals (some the first reported occurrences) collected on my recent visit to the G. F. Smith mine dumps.

The name of the G. F. Smith mine has been misspelled many times. As documented above, the owner’s full name is George Frank Smith. The incorrect term “G. E. Smith” is found in the text of Olson (1950), Morrill (1960), the second map in BMC (1963), the text of Smith (2005), and still at some locations on Mindat (not all "G. E." occurrences were fixed). “G. E. Smith mine” is also found on labels for some Harvard specimens with the added complication that they were not from the G. F. Smith mine at all, but rather the Chandlers Mill mine. Cameron et al. (1954:289) use “G. G. Smith” once, clearly a typo since “G. F. Smith” is used correctly in the remainder of instances in their text.

Morrill (1960) deserves a special note. Based on reported minerals and directions to the mines, it appears that Morrill (1960) has completely reversed the mine names. He attributes the long list of reported minerals associated with Chandlers Mill mine to G. F. Smith mine, and locates Chandlers Mill mine east of the Smith residence (where G. F. Smith mine is located). The coordinates Morrill uses are also wrong as detailed in Morong (2011).

Recommendations
1) The village name should be called “Chandlers Mill, Newport, Sullivan County, New Hampshire.” Since it is unincorporated and may change without notice, Chandlers Mill should not be used in locality references without also specifying the nearest incorporated town, Newport.

2) The mine nearest to the Sugar River worked by George F. Smith should be called the “G. F. Smith mine” as it was called in the 1940s when it was actively being mined, and as shown on maps by Olson (1950), Cameron et al. (1954), and Meyers and Stewart (1977). The full reference should be: G. F. Smith mine, Chandlers Mill, Newport, Sullivan County, New Hampshire. The use of only “Smith mine” should be avoided due to confusion with Chapman (1943), Mrose (1952) and other early references.

3) The mine further south up the hill should be called “Chandlers Mill mine” as it was called in the 1940s when it was actively being mined, and as shown [corrected from “Chandler Mills”] on maps by Olson (1950), Cameron et al. (1954), BMC (1958, 1963), the BMC topo map and Meyers and Stewart (1977). The full reference should be: Chandlers Mill mine, Newport, Sullivan County, New Hampshire. An explanatory note should point out the outdated and confusing “Smith mine” used in Chapman (1943) and Mrose (1952) when referring to Chandlers Mill mine.

4) Based on this research and recent field trip surveys, it is recommended that Newport, New Hampshire specimens of crystallized triphylite, hurlbutite, brazilianite, and secondary phosphate species (e.g., augelite, beryllonite, goyazite, wardite) have their locality labeled as: Chandlers Mill mine, Newport, Sullivan County, New Hampshire.

Acknowledgements
I am extremely grateful for the extraordinary assistance and extensive research by Tom Mortimer. I would also like to thank Kevin Czaja for his help in Boston.

References
[BMC] Boston Mineral Club, pub. 1958. New England Locations Bulletin 1. Boston.

———, pub. 1963. Boston Mineral Club Field Trip Guide for 1963. Boston.

Cameron, E. N., D. M. Larrabee, A. H. McNair, J. J. Page, G. W. Stewart, and V. E. Shainin. 1954. Pegmatite investigations 1942-45 New England. U. S. Geological Survey Professional Paper 255. Washington, DC: United States Government Printing Office.

Chapman, C. A. 1941. The tectonic significance of some pegmatites in New Hampshire. Journal of Geology 49(4):370-381.

———. 1942. Intrusive domes of the Claremont-Newport area, New Hampshire. GSA Bulletin 53(6):889-915.

———. 1943. Large magnesia-rich triphylite crystals in pegmatite. American Mineralogist 28(2):90-58.

Meyers, T. R. and G. W. Stewart. 1977. The Geology of New Hampshire: Part 3, Minerals and Mines. State of New Hampshire Department of Resources and Economic Development.

Morong, D. 2011. Morrill Coordinates and Errors. Available from: [www.mindatnh.org]. [cited 10 August 2013]

Morrill, P. 1960. New Hampshire mines and mineral localities, 2nd edition. Hanover: Montshire Museum.

———. 1963. Mineral Guide to New England. Winthrop: Winthrop Mineral Shop.

Mrose, M. E. 1952. Hurlbutite, a new mineral. American Mineralogist 37(11):931-940.

New Hampshire Birth Records, Early to 1900 [internet database and images]. Available from [www.familysearch.org]. [cited 27July 2013].
1887 April 24. George Frank Smith. Newport.

New Hampshire Death Records, 1654-1947 [internet database and images]. Available from [www.familysearch.org]. [cited 27July 2013].
1885 March 23. George F. Cram. Newport.
1893 June 18. Benjamin Marshall. Newport.
1903 October 9. Jane B. Cram. Newport.
1912 January 28. Allen P. Marshall. Newport.
1921 December 26. Franklin P. Smith. Newport.

New Hampshire Marriage Records, 1637-1947 [internet database and images]. Available from [www.familysearch.org]. [cited 10 August 2013]
1865 September 20. Ira F. Chandler, Ester M. Chase. Goshen.
1924 October 7. George F. Smith, Agnes E. Brown. Newport.
1941 February 22. Lawrence E. Sargeant, Cecilia I. Berube. Newport.

Olson, J. C. 1950. Feldspar and associated pegmatite minerals in New Hampshire. In: Part 14: Mineral Resource Survey. Concord: New Hampshire State Planning and Development Commission and U. S. Geological Survey. (Reprinted 1961)

Page, J. J. and D. M. Larrabee. 1962. Beryl resources of New Hampshire. US Geological Survey Professional Paper 353. Washington DC: United States Government Printing Office.

Smith, A. 2005. New Hampshire Mineral Locality Index. In: Rocks and Minerals Magazine 80(4):242-261.

Sullivan County Registry of Deeds. 14 Main Street, Newport, New Hampshire.
1886. Book 125, page 470.
1896. Book 141, page 29.
1922. Book 211, page 164.
1938. Book 257, page 506.
1941. Book 275, page 182.
1943. Book 289, page 180.

US City Directories 1821-1989 [database and images on-line]. Provo, UT, USA: Ancestry.com Operations Inc., 2004. Available at [www.ancestry.com]. [cited 27July 2013]
1927. Lothrop’s Newport Directory. George (Agnes) Smith.
1931. Lothrop’s Newport Directory. George (Agnes) Smith.
1934. Newport Directory. George (Agnes) Smith.
1936. Newport Directory. George (Agnes) Smith.
1938. Newport Directory. George (Agnes) Smith.
1949. Newport Directory. George (Agnes) Smith.
1956. Manning’s Newport Directory. George F. (Agnes) Smith.

US Federal Bureau of the Census [database and images on-line]. Provo, UT, USA: Ancestry.com Operations Inc., 2004. Available at [www.ancestry.com]. [cited 20 August 2013]
1870. Ira F. Chandler: Newport, Sullivan County, New Hampshire.
1870. Jane B. Cram: Newport, Sullivan County, New Hampshire.
1870. Allen P. Marshall: Newport, Sullivan County, New Hampshire.
1880. Ira F. Chandler: Newport, Sullivan County, New Hampshire.
1880. Allen P. Marshall: Newport, Sullivan County, New Hampshire.
1900. Ira F. Chandler: Claremont, Sullivan County, New Hampshire.
1900. Allen P. Marshall: Newport, Sullivan County, New Hampshire.
1900. Frank P. Smith: Newport, Sullivan County, New Hampshire.
1900. George F. Smith: Newport, Sullivan County, New Hampshire.
1920. Frank P. Smith: Newport, Sullivan County, New Hampshire.
1920. George F. Smith: Newport, Sullivan County, New Hampshire.
1930. John G. Sargeant: Newport, Sullivan County, New Hampshire.
1930. George F. Smith: Newport, Sullivan County, New Hampshire.
1940. William A. Hoy: Newport, Sullivan County, New Hampshire.
1940. George F. Smith: Newport, Sullivan County, New Hampshire.

Wheeler, E. 1879. The history of Newport, New Hampshire, from 1766 to 1878. Concord: Republican Press Association.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


47 valid minerals. 1 (TL) - type locality of valid minerals. 6 erroneous literature entries.

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Albite var. Cleavelandite
Formula: Na(AlSi3O8)
'Allanite Group' ?
Formula: (A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
Description: No specimens known.
Alluaudite ?
Formula: (Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Description: This mineral may be a specifically new species in the qinghiite series.
Amblygonite
Formula: LiAl(PO4)F
Description: The cited papers while written by a student and future famous mineralogist did not contain data regarding members of this series. Extremely unlikely. The locality does produce valid montebrasite.
Arrojadite-(KFe)
Formula: (KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
Arsenopyrite
Formula: FeAsS
Augelite
Formula: Al2(PO4)(OH)3
Beryl
Formula: Be3Al2(Si6O18)
Beryl var. Aquamarine ?
Formula: Be3Al2Si6O18
Beryl var. Heliodor ?
Formula: Be3Al2(Si6O18)
Beryllonite
Formula: NaBePO4
'Biotite' ?
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Brazilianite
Formula: NaAl3(PO4)2(OH)4
Calcite
Formula: CaCO3
Chalcopyrite
Formula: CuFeS2
Childrenite
Formula: Fe2+Al(PO4)(OH)2 · H2O
Crandallite
Formula: CaAl3(PO4)(PO3OH)(OH)6
Dickinsonite-(KMnNa)
Formula: (KNa)(Mn2+◻)Ca(Na2Na)Mn2+13Al(PO4)11(PO4)(OH)2
Description: All chemical analyses known show that this mineral is actually arrojadite. The name dickinsonite was first used before arrojadite was well-defined.
Eosphorite
Formula: Mn2+Al(PO4)(OH)2 · H2O
Ferroqingheiite
Formula: NaNaFe2+(MgAl)(PO4)3
Description: Chemical analysis in Moore and Ito (1979) Min Mag 43:227. Qingheiite-Fe2+ is associated with arrojadite-(KFe).
Ferrowyllieite
Formula: (Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Description: Calculation of this mineral's formula places it as ferrous iron-rich qingheiite. It is not ferrowyllieite.
Fluorapatite
Formula: Ca5(PO4)3F
Fluorapatite var. Carbonate-rich Fluorapatite
Formula: Ca5(PO4,CO3)3(F,O)
Fluorite
Formula: CaF2
Goethite
Formula: α-Fe3+O(OH)
References:
Graftonite
Formula: Fe2+Fe2+2(PO4)2
Greifensteinite
Formula: Ca2Fe2+5Be4(PO4)6(OH)4 · 6H2O
Heterosite
Formula: (Fe3+,Mn3+)PO4
Description: Parent triphylite from this locality has Mn/Mn + Fe = 0.09 (Moore, 2000; Chapman, 1943). The reason for this remarkable ratio is the large MgO content (7.38 weight percent).
Hurlbutite (TL)
Formula: CaBe2(PO4)2
Type Locality:
Habit: well crystallized
Colour: pale yellowish, greenish
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Laueite ?
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Description: Given the composition of the triphylite Fe>Mg>>Mn, this mineral is more than likely ushkovite.
Lazulite
Formula: MgAl2(PO4)2(OH)2
Magnetite
Formula: Fe2+Fe3+2O4
Microcline
Formula: K(AlSi3O8)
Montebrasite
Formula: LiAl(PO4)(OH)
Moraesite
Formula: Be2(PO4)(OH) · 4H2O
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Purpurite
Formula: Mn3+(PO4)
Description: The parent triphylite at this locality is Mn/Mn + Fe = 0.09 (Moore, 2000).
Pyrite
Formula: FeS2
Pyrrhotite
Formula: Fe1-xS
Quartz
Formula: SiO2
Quartz var. Rose Quartz
Formula: SiO2
Quartz var. Smoky Quartz
Formula: SiO2
Rockbridgeite
Formula: Fe2+Fe3+4(PO4)3(OH)5
Roscherite ?
Formula: Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Description: Primary triphylite has extremely low Mn ratio: Fe>Mg>>Mn. No chemical analysis known of "roscherite" from this locality and specimens are more likely to be greifensteinite or less likely, zanazziite.
Ruifrancoite
Formula: Ca2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
Sarcopside
Formula: Fe2+3(PO4)2
Schorl
Formula: NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Scorzalite
Formula: Fe2+Al2(PO4)2(OH)2
Siderite
Formula: FeCO3
Sillimanite
Formula: Al2(SiO4)O
Staurolite
Formula: Fe2+2Al9Si4O23(OH)
Strunzite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Triphylite
Formula: LiFe2+PO4
Description: Triphylite from this locality has Mn/Mn + Fe = 0.09 (Chapman, 1943; Moore, 2000), but these crystals have an extraordinary amount of MgO (7.38 weight percent).
References:
Uraninite
Formula: UO2
Ushkovite ?
Formula: MgFe3+2(PO4)2(OH)2 · 8H2O
Description: Qualitative chemical analysis by Curt Segeler showed that "laueite" from this locality was Mg-rich and Mn-poor.
Vivianite
Formula: Fe2+Fe2+2(PO4)2 · 8H2O
Wardite
Formula: NaAl3(PO4)2(OH)4 · 2H2O
Whiteite-(MnMnMn)
Formula: Mn2+Mn2+Mn2+2Al2(PO4)4(OH)2 · 8H2O
'Whiteite Subgroup'
Formula: XM1M22M32(H2O)8(OH)2(PO4)4
Description: The whiteite from this locality is beige to tan and should be chemically analyzed to verify its relationship to the group.
Zircon
Formula: Zr(SiO4)

Gallery:

NaAl3(PO4)2(OH)4 Brazilianite
CaBe2(PO4)2 Hurlbutite (TL)
Fe2+Al2(PO4)2(OH)2 Scorzalite
LiFe2+PO4 Triphylite

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Chalcopyrite2.CB.10aCuFeS2
Pyrrhotite2.CC.10Fe1-xS
Pyrite2.EB.05aFeS2
Arsenopyrite2.EB.20FeAsS
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Goethite4.00.α-Fe3+O(OH)
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz
var. Smoky Quartz
4.DA.05SiO2
4.DA.05SiO2
var. Rose Quartz4.DA.05SiO2
Uraninite4.DL.05UO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Siderite5.AB.05FeCO3
Group 8 - Phosphates, Arsenates and Vanadates
Beryllonite8.AA.10NaBePO4
Hurlbutite (TL)8.AA.15CaBe2(PO4)2
Purpurite ?8.AB.10Mn3+(PO4)
Triphylite8.AB.10LiFe2+PO4
Heterosite8.AB.10(Fe3+,Mn3+)PO4
Sarcopside8.AB.15Fe2+3(PO4)2
Graftonite8.AB.20Fe2+Fe2+2(PO4)2
Alluaudite ?8.AC.10(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Ferrowyllieite ?8.AC.15(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Ferroqingheiite8.AC.15NaNaFe2+(MgAl)(PO4)3
Montebrasite8.BB.05LiAl(PO4)(OH)
Amblygonite ?8.BB.05LiAl(PO4)F
Lazulite ?8.BB.40MgAl2(PO4)2(OH)2
Scorzalite8.BB.40Fe2+Al2(PO4)2(OH)2
Rockbridgeite8.BC.10Fe2+Fe3+4(PO4)3(OH)5
Augelite8.BE.05Al2(PO4)(OH)3
Arrojadite-(KFe)8.BF.05(KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
Dickinsonite-(KMnNa) ?8.BF.05(KNa)(Mn2+◻)Ca(Na2Na)Mn2+13Al(PO4)11(PO4)(OH)2
Brazilianite8.BK.05NaAl3(PO4)2(OH)4
Crandallite8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Fluorapatite8.BN.05Ca5(PO4)3F
var. Carbonate-rich Fluorapatite8.BN.05Ca5(PO4,CO3)3(F,O)
Vivianite8.CE.40Fe2+Fe2+2(PO4)2 · 8H2O
Moraesite8.DA.05Be2(PO4)(OH) · 4H2O
Roscherite ?8.DA.10Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Ruifrancoite8.DA.10Ca2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
Greifensteinite8.DA.10Ca2Fe2+5Be4(PO4)6(OH)4 · 6H2O
Strunzite8.DC.25Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Laueite ?8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Ushkovite ?8.DC.30MgFe3+2(PO4)2(OH)2 · 8H2O
Childrenite ?8.DD.20Fe2+Al(PO4)(OH)2 · H2O
Eosphorite8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Whiteite-(MnMnMn)8.DH.Mn2+Mn2+Mn2+2Al2(PO4)4(OH)2 · 8H2O
Wardite8.DL.10NaAl3(PO4)2(OH)4 · 2H2O
Group 9 - Silicates
Zircon9.AD.30Zr(SiO4)
Sillimanite9.AF.05Al2(SiO4)O
Staurolite9.AF.30Fe2+2Al9Si4O23(OH)
Beryl
var. Heliodor ?
9.CJ.05Be3Al2(Si6O18)
9.CJ.05Be3Al2(Si6O18)
var. Aquamarine ?9.CJ.05Be3Al2Si6O18
Schorl9.CK.05NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Microcline9.FA.30K(AlSi3O8)
Albite
var. Cleavelandite
9.FA.35Na(AlSi3O8)
9.FA.35Na(AlSi3O8)
Unclassified
'Biotite' ?-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
'Whiteite Subgroup'-XM1M22M32(H2O)8(OH)2(PO4)4
'Allanite Group' ?-(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)

List of minerals for each chemical element

HHydrogen
H Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
H AugeliteAl2(PO4)(OH)3
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
H BrazilianiteNaAl3(PO4)2(OH)4
H ChildreniteFe2+Al(PO4)(OH)2 · H2O
H CrandalliteCaAl3(PO4)(PO3OH)(OH)6
H Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
H EosphoriteMn2+Al(PO4)(OH)2 · H2O
H Goethiteα-Fe3+O(OH)
H HydroxylapatiteCa5(PO4)3(OH)
H LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H LazuliteMgAl2(PO4)2(OH)2
H MontebrasiteLiAl(PO4)(OH)
H MoraesiteBe2(PO4)(OH) · 4H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H RockbridgeiteFe2+Fe43+(PO4)3(OH)5
H RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
H SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
H ScorzaliteFe2+Al2(PO4)2(OH)2
H StauroliteFe22+Al9Si4O23(OH)
H StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
H UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
H VivianiteFe2+Fe22+(PO4)2 · 8H2O
H WarditeNaAl3(PO4)2(OH)4 · 2H2O
H GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
H RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
H Whiteite SubgroupXM1M22M32(H2O)8(OH)2(PO4)4
H Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
H Whiteite-(MnMnMn)Mn2+Mn2+Mn22+Al2(PO4)4(OH)2 · 8H2O
LiLithium
Li AmblygoniteLiAl(PO4)F
Li MontebrasiteLiAl(PO4)(OH)
Li TriphyliteLiFe2+PO4
BeBeryllium
Be Beryl var. AquamarineBe3Al2Si6O18
Be BerylloniteNaBePO4
Be BerylBe3Al2(Si6O18)
Be HurlbutiteCaBe2(PO4)2
Be MoraesiteBe2(PO4)(OH) · 4H2O
Be RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Be Beryl var. HeliodorBe3Al2(Si6O18)
Be GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
Be RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
BBoron
B SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
C CalciteCaCO3
C Fluorapatite var. Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)
C SideriteFeCO3
OOxygen
O AlbiteNa(AlSi3O8)
O Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
O AmblygoniteLiAl(PO4)F
O Beryl var. AquamarineBe3Al2Si6O18
O Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
O AugeliteAl2(PO4)(OH)3
O BerylloniteNaBePO4
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
O BrazilianiteNaAl3(PO4)2(OH)4
O BerylBe3Al2(Si6O18)
O CalciteCaCO3
O Fluorapatite var. Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)
O ChildreniteFe2+Al(PO4)(OH)2 · H2O
O CrandalliteCaAl3(PO4)(PO3OH)(OH)6
O Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
O EosphoriteMn2+Al(PO4)(OH)2 · H2O
O Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
O FluorapatiteCa5(PO4)3F
O Goethiteα-Fe3+O(OH)
O GraftoniteFe2+Fe22+(PO4)2
O Heterosite(Fe3+,Mn3+)PO4
O HurlbutiteCaBe2(PO4)2
O HydroxylapatiteCa5(PO4)3(OH)
O LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O LazuliteMgAl2(PO4)2(OH)2
O MagnetiteFe2+Fe23+O4
O MicroclineK(AlSi3O8)
O MontebrasiteLiAl(PO4)(OH)
O MoraesiteBe2(PO4)(OH) · 4H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O PurpuriteMn3+(PO4)
O QuartzSiO2
O RockbridgeiteFe2+Fe43+(PO4)3(OH)5
O RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
O Quartz var. Rose QuartzSiO2
O SarcopsideFe32+(PO4)2
O SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
O ScorzaliteFe2+Al2(PO4)2(OH)2
O SideriteFeCO3
O SillimaniteAl2(SiO4)O
O Quartz var. Smoky QuartzSiO2
O StauroliteFe22+Al9Si4O23(OH)
O StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
O TriphyliteLiFe2+PO4
O UraniniteUO2
O UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
O VivianiteFe2+Fe22+(PO4)2 · 8H2O
O WarditeNaAl3(PO4)2(OH)4 · 2H2O
O ZirconZr(SiO4)
O Beryl var. HeliodorBe3Al2(Si6O18)
O Albite var. CleavelanditeNa(AlSi3O8)
O GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
O RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
O Whiteite SubgroupXM1M22M32(H2O)8(OH)2(PO4)4
O FerroqingheiiteNaNaFe2+(MgAl)(PO4)3
O Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
O Whiteite-(MnMnMn)Mn2+Mn2+Mn22+Al2(PO4)4(OH)2 · 8H2O
FFluorine
F AmblygoniteLiAl(PO4)F
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
F Fluorapatite var. Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)
F FluorapatiteCa5(PO4)3F
F FluoriteCaF2
NaSodium
Na AlbiteNa(AlSi3O8)
Na Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Na Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Na BerylloniteNaBePO4
Na BrazilianiteNaAl3(PO4)2(OH)4
Na Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Na Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Na SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Na WarditeNaAl3(PO4)2(OH)4 · 2H2O
Na Albite var. CleavelanditeNa(AlSi3O8)
Na FerroqingheiiteNaNaFe2+(MgAl)(PO4)3
MgMagnesium
Mg Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Mg Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Mg LazuliteMgAl2(PO4)2(OH)2
Mg UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
Mg RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
Mg FerroqingheiiteNaNaFe2+(MgAl)(PO4)3
AlAluminium
Al AlbiteNa(AlSi3O8)
Al AmblygoniteLiAl(PO4)F
Al Beryl var. AquamarineBe3Al2Si6O18
Al Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Al AugeliteAl2(PO4)(OH)3
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Al BrazilianiteNaAl3(PO4)2(OH)4
Al BerylBe3Al2(Si6O18)
Al ChildreniteFe2+Al(PO4)(OH)2 · H2O
Al CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Al Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Al EosphoriteMn2+Al(PO4)(OH)2 · H2O
Al Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Al LazuliteMgAl2(PO4)2(OH)2
Al MicroclineK(AlSi3O8)
Al MontebrasiteLiAl(PO4)(OH)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Al ScorzaliteFe2+Al2(PO4)2(OH)2
Al SillimaniteAl2(SiO4)O
Al StauroliteFe22+Al9Si4O23(OH)
Al WarditeNaAl3(PO4)2(OH)4 · 2H2O
Al Beryl var. HeliodorBe3Al2(Si6O18)
Al Albite var. CleavelanditeNa(AlSi3O8)
Al FerroqingheiiteNaNaFe2+(MgAl)(PO4)3
Al Whiteite-(MnMnMn)Mn2+Mn2+Mn22+Al2(PO4)4(OH)2 · 8H2O
SiSilicon
Si AlbiteNa(AlSi3O8)
Si Beryl var. AquamarineBe3Al2Si6O18
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Si BerylBe3Al2(Si6O18)
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si Quartz var. Rose QuartzSiO2
Si SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Si SillimaniteAl2(SiO4)O
Si Quartz var. Smoky QuartzSiO2
Si StauroliteFe22+Al9Si4O23(OH)
Si ZirconZr(SiO4)
Si Beryl var. HeliodorBe3Al2(Si6O18)
Si Albite var. CleavelanditeNa(AlSi3O8)
Si Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
PPhosphorus
P Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
P AmblygoniteLiAl(PO4)F
P Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
P AugeliteAl2(PO4)(OH)3
P BerylloniteNaBePO4
P BrazilianiteNaAl3(PO4)2(OH)4
P Fluorapatite var. Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)
P ChildreniteFe2+Al(PO4)(OH)2 · H2O
P CrandalliteCaAl3(PO4)(PO3OH)(OH)6
P Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
P EosphoriteMn2+Al(PO4)(OH)2 · H2O
P Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
P FluorapatiteCa5(PO4)3F
P GraftoniteFe2+Fe22+(PO4)2
P Heterosite(Fe3+,Mn3+)PO4
P HurlbutiteCaBe2(PO4)2
P HydroxylapatiteCa5(PO4)3(OH)
P LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P LazuliteMgAl2(PO4)2(OH)2
P MontebrasiteLiAl(PO4)(OH)
P MoraesiteBe2(PO4)(OH) · 4H2O
P PurpuriteMn3+(PO4)
P RockbridgeiteFe2+Fe43+(PO4)3(OH)5
P RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
P SarcopsideFe32+(PO4)2
P ScorzaliteFe2+Al2(PO4)2(OH)2
P StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
P TriphyliteLiFe2+PO4
P UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
P VivianiteFe2+Fe22+(PO4)2 · 8H2O
P WarditeNaAl3(PO4)2(OH)4 · 2H2O
P GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
P RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
P Whiteite SubgroupXM1M22M32(H2O)8(OH)2(PO4)4
P FerroqingheiiteNaNaFe2+(MgAl)(PO4)3
P Whiteite-(MnMnMn)Mn2+Mn2+Mn22+Al2(PO4)4(OH)2 · 8H2O
SSulfur
S ArsenopyriteFeAsS
S ChalcopyriteCuFeS2
S PyriteFeS2
S PyrrhotiteFe1-xS
KPotassium
K Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
K Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Ca Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Ca CalciteCaCO3
Ca Fluorapatite var. Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)
Ca CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Ca Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Ca Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Ca FluorapatiteCa5(PO4)3F
Ca FluoriteCaF2
Ca HurlbutiteCaBe2(PO4)2
Ca HydroxylapatiteCa5(PO4)3(OH)
Ca RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Ca GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
Ca RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
TiTitanium
Ti BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
MnManganese
Mn Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mn Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Mn EosphoriteMn2+Al(PO4)(OH)2 · H2O
Mn Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Mn Heterosite(Fe3+,Mn3+)PO4
Mn LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn PurpuriteMn3+(PO4)
Mn RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Mn StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Mn RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
Mn Whiteite-(MnMnMn)Mn2+Mn2+Mn22+Al2(PO4)4(OH)2 · 8H2O
FeIron
Fe Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Fe ArsenopyriteFeAsS
Fe Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Fe ChalcopyriteCuFeS2
Fe ChildreniteFe2+Al(PO4)(OH)2 · H2O
Fe Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Fe Goethiteα-Fe3+O(OH)
Fe GraftoniteFe2+Fe22+(PO4)2
Fe Heterosite(Fe3+,Mn3+)PO4
Fe LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe MagnetiteFe2+Fe23+O4
Fe PyriteFeS2
Fe PyrrhotiteFe1-xS
Fe RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Fe SarcopsideFe32+(PO4)2
Fe SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Fe ScorzaliteFe2+Al2(PO4)2(OH)2
Fe SideriteFeCO3
Fe StauroliteFe22+Al9Si4O23(OH)
Fe StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Fe TriphyliteLiFe2+PO4
Fe UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
Fe VivianiteFe2+Fe22+(PO4)2 · 8H2O
Fe GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
Fe RuifrancoiteCa2(◻,Mn)2(Fe3+,Mn,Mg)4Be4(PO4)6(OH)4(OH,H2O)2 · 4H2O
Fe FerroqingheiiteNaNaFe2+(MgAl)(PO4)3
CuCopper
Cu ChalcopyriteCuFeS2
AsArsenic
As ArsenopyriteFeAsS
ZrZirconium
Zr ZirconZr(SiO4)
UUranium
U UraniniteUO2

Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
矿物 and/or 产地  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
版权所有© mindat.org1993年至2024年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 - Report a bug/vulnerability Current server date and time: 2024.4.25 06:29:35 Page updated: 2024.3.26 13:12:07
Go to top of page