SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Ray Mine, Scott Mountain, Mineral Creek Mining District (Ray Mining District), Dripping Spring Mts, Pinal Co., Arizona, USAi
Regional Level Types
Ray MineMine
Scott MountainMountain
Mineral Creek Mining District (Ray Mining District)Mining District
Dripping Spring MtsMountain Range
Pinal Co.County
ArizonaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
33° 10' 59'' North , 110° 59' 32'' West
Latitude & Longitude (decimal):
Locality type:
Nearest Settlements:
PlacePopulationDistance
Superior2,943 (2017)15.6km
Kearny2,038 (2017)15.9km
Top-of-the-World231 (2011)18.5km
Miami1,783 (2017)26.6km
Hayden650 (2017)27.6km
Other/historical names associated with this locality:
Pearl Handle pit; El Paso; Hayden


A Cu-Ag-Au-Mo-Pb-Zn occurrence/mine located in the SE¼ sec. 9, S½ sec. 10, N½ sec. 15, NE¼ sec. 16, as well as in portions of secs. 11 & 14, T3S, R13E, G&SRM, about 2¾ miles SSW of Scott Mountain, about 3¾ miles S of Hot Tamale Peak, and about 4 miles NNW of Kelvin. Discovered in 1846. First produced in 1911. Owned by Kennecott Copper (1955-1986). Owned & operated by ASARCO (American Smelting and Refining Company) (100%), New York (1991-present). NOTE: This mine, named after the mining town of Ray, subhumed that town (which no longer exists). Residents were moved to the new town of Kearny built by the mining company; however, Kelvin is the nearest municipality to the mine.

Mineralization is a porphyry copper deposit (Mineral occurrence model information: Model code: 79; USGS model code: 21a; Deposit model name: Porphyry Cu-Mo; Mark3 model number: 2), hosted in Mesoproterozoic diabase sills, and in Mesoproterozoic Apache Group and the over-faulted older Pinal Schists. The ore body is horse-shoe shaped, concentric and symmetrical blanket at a thickness of 400 meters, width of 2,400 meters, length of 3,200 meters, over an area of 7,824 HA (Cu-Mo porphyry mineralization in an area 2 miles X 1.5 miles X 0.25 mile deep. Ore is found mainly in the supergene-enriched Pinal Schist), and with a depth-to-top of 0 meters. It is disseminated and massive. The primary mode of origin was hydrothermal activity and the secondary mode was oxidation. Ore control was the intersection of NW and NE fault zones, permeability & type of host rock. Ore concentration was secondary enrichment. Wallrock alteration is moderate (sericitic, propylitic, biotite-clay, chloritization, and epidotization). Area structures include the Broken Hill fault, West End fault, North End fault, and numerous others, mostly normal. Associated rocks include the Paleocene Granite Mountain Porphyry (quartz monzonite). Area rocks include Early Proterozoic metasedimentary rocks.

Workings include surface openings comprised of 2 open pits (the Pearl Handle pit & the West pit). In 1991, operations included dump and heap leaching.

Reserves and resources data: In-situ ore (estimate year 1998): Demonstrated reserves were 862,747,000 metric tons of ore. with Cu at 0.6 weight percent.

Analytical data results: Primary Cu occurs as chalcopyrite that averages 0.1-0.2% in the Pinal Shale and Granite Mountain Porphyry, and more than 0.4% in the diabase.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

54 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

'Allanite Group'
Formula: {A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Andalusite
Formula: Al2(SiO4)O
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Anhydrite
Formula: CaSO4
Reference: MRDS database Dep. ID #10106863, MRDS ID #M000327.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Azurite
Formula: Cu3(CO3)2(OH)2
Description: Crystals to 1 cm in the West Pit, rosettes to 5 mm with malachite and siderite in the Poorman area.
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Baryte
Formula: BaSO4
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Bementite
Formula: Mn7Si6O15(OH)8
Habit: Minute, platy crystals
Description: Occurs as clear crystals with hematite in oxidized capping in the Granite Mountain Porphyry.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 132.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Bornite
Formula: Cu5FeS4
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Calcite
Formula: CaCO3
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Chalcocite
Formula: Cu2S
Description: Massive as veins to several cm in the West Pit, also as pseudomorphs after pyrite; essential element of disseminated ores.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 163; Schwartz, G.M. (1947), Hydrothermal alteration in the 'porphyry copper' deposits, Econ.Geol.: 42: 319-352; Ransome, F.L. (1919), The copper deposits of Ray and Miami, AZ, USGS PP 115; Clarke, O.M., Jr. (1953), Geochemical prospectying for copper at Ray, AZ, Econ.Geol.: 48: 39-45; Lewis, D.V. (1955), Relationships of ore bodies to dikes and sills, Econ.Geol.: 50: 495-516; Metz, R.A. & A.W. Rose (1966), Geology of the Ray copper deposit, Ray, AZ, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 177-188; Univ. AZ Bull. 41 (1916-17), Mineralogy of Useful Minerals in AZ: 28.
Chalcopyrite
Formula: CuFeS2
Reference: Univ. AZ Bull. 41 (1916-17), Mineralogy of Useful Minerals in AZ: 29.
Chlorargyrite
Formula: AgCl
Description: Occurs as micro-crystal pseudomorphs.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 170.
'Chlorite Group'
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Colour: Green, black
Description: Spherulitic aggregates of highly birefringent material.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 174; Schwartz, G.M. (1934), Paragenesis of the oxidized ores of copper, Econ.Geol.: 29: 55-75; Clarke, O.M., Jr. (1953), Geochemical prospectying for copper at Ray, AZ, Econ.Geol.: 48: 39-45; Stephens, J.D. & R.A. Metz (1967), The occurrence of copper-bearing clay minerals in oxidized portions of the disseminated copper deposit at Ray, AZ (abstract), Econ.Geol.: 62: 876-877; Throop, A.H. & P.R. Buseck (1971), Nature and origin of black chrysocolla at the Inspiration mine, AZ, Econ.Geol.: 66: 1168-1175; Wilson, W.E. (1977), What's new in minerals? (Ray chrysocolla), in.Rec.: 8: 58; Thompson, W. (1980), Chrysocolla pseudomorphs from Ray, AZ, Min.Rec.: 11: 248-250; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14: 311-322.
Copper
Formula: Cu
Habit: Sawtooth-shaped single crystals
Description: Unusually large masses; aggregates to 1 x 5.5 inches (2.5 to 13.75 cm) loose in clay.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 186; Ransome, F.L. (1919), The copper deposits of Ray and Miami, AZ, USGS PP 115; White, J.S., Jr. (1974), What's new in minerals?, Min.Rec.: 5: 233-236; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14: 311-322.
Covellite
Formula: CuS
Reference: MRDS database Dep. ID #10106863, MRDS ID #M000327.
Cuprite
Formula: Cu2O
Description: Crystalline material in the oxidized zone of the deposit.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 197; Metz, R.A. & A.W. Rose (1966), Geology of the Ray copper deposit, Ray, AZ, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 177-188.
Cuprite var: Chalcotrichite
Formula: Cu2O
Description: Recently as felted masses to several cm in a quartzite in the Poorman area, with native copper
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 197; Metz, R.A. & A.W. Rose (1966), Geology of the Ray copper deposit, Ray, AZ, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 177-188.
Delafossite
Formula: CuFeO2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 200; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Descloizite
Formula: PbZn(VO4)(OH)
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 201; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Dioptase
Formula: CuSiO3 · H2O
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Galena
Formula: PbS
Description: Coarsely crystalline vein material found in the Poorman area in July, 1995, with Sphalerite
Reference: D. Court collection
'Garnet Group'
Formula: X3Z2(SiO4)3
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
'Gem Silica'
Reference: Chris Boyd
Goethite
Formula: α-Fe3+O(OH)
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Gold
Formula: Au
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Gypsum
Formula: CaSO4 · 2H2O
Reference: No reference listed; Rob Lavinsky
Halite
Formula: NaCl
Habit: Micro-crystals
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 243.
'Halloysite'
Formula: Al2(Si2O5)(OH)4
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 174; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Halloysite-10Å
Formula: Al2Si2O5(OH)4 · 2H2O
Description: Occurs in hydrothermally altered porphyry stock; also as veinlets & coating fracture surfaces; often exhibits colloform texture & may be intergrown with chrysocolla.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 213; Schwartz, G.M. (1934), Paragenesis of the oxidized ores of copper, Econ.Geol.: 29: 55-75; Schwartz, G.M. (1947), Hydrothermal alteration in the 'porphyry copper' deposits, Econ.Geol.: 42: 319-352; Stephens, J.D. & R.A. Metz (1967), The occurrence of copper-bearing clay minerals in oxidized portions of the disseminated copper deposit at Ray, AZ (abstract), Econ.Geol.: 62: 876-877.
Halotrichite
Formula: FeAl2(SO4)4 · 22H2O
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Hematite
Formula: Fe2O3
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 132.
'Heulandite subgroup'
Description: Occurs mixed with green and black chrysocolla.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 174, 250; Throop, A.H. & P.R. Buseck (1971), Nature and origin of black chrysocolla at the Inspiration mine, AZ, Econ.Geol.: 66: 1168-1175; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
'Hornblende'
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
'Hydromuscovite'
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 213, 315; Schwartz, G.M. (1952), Chlorite-calcite pseudomorphs after orthoclase phenocrysts, Ray, Arizona, Econ.Geol.: 47: 665-672.
Ilmenite
Formula: Fe2+TiO3
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 213; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Laumontite
Formula: CaAl2Si4O12 · 4H2O
Description: Laumontite was found in a fault gouge in the Poorman area, July 1995.
Reference: D. Court collection
Libethenite
Formula: Cu2(PO4)(OH)
Reference: D. Court collection
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Malachite
Formula: Cu2(CO3)(OH)2
Description: Common in the silicate orebody, with chrysocolla, as nodules to 5 cm and vein material. Acicular crystals found in the West Pit.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd. ed.: 174.
Metatorbernite
Formula: Cu(UO2)2(PO4)2 · 8H2O
Reference: Steve Sorrell Collection
Mimetite
Formula: Pb5(AsO4)3Cl
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 299.
Molybdenite
Formula: MoS2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 302; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322; Univ. AZ Bull. 41 (1916-17), Mineralogy of Useful Minerals in AZ: 46.
'Monazite'
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 213, 315; Schwartz, G.M. (1952), Chlorite-calcite pseudomorphs after orthoclase phenocrysts, Ray, Arizona, Econ.Geol.: 47: 665-672.
Neotocite
Formula: (Mn,Fe,Mg)SiO3 · H2O
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Description: Occurs in hydrothermally altered quartz monzonite.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 315; Schwartz, G.M. (1952), Chlorite-calcite pseudomorphs after orthoclase phenocrysts, Ray, Arizona, Econ.Geol.: 47: 665-672; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Orthoclase
Formula: K(AlSi3O8)
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Mineralogical Record: 14: 311-322.
Pyrite
Formula: FeS2
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Mineralogical Record: 14: 311-322.
Quartz
Formula: SiO2
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Quartz var: Chalcedony
Formula: SiO2
Reference: No reference listed
Rutile
Formula: TiO2
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Siderite
Formula: FeCO3
Reference: Dan Evanich collection (intergrown with copper)
Silver
Formula: Ag
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Mineralogical Record: 14: 311-322.
Sphalerite
Formula: ZnS
Description: Caorsely crystalline vein material found in the Poorman area in July, 1995, with Galena
Reference: D. Court collection
Talc
Formula: Mg3Si4O10(OH)2
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
'Tennantite'
Formula: Cu6(Cu4X2)As4S12S
Reference: MRDS database Dep. ID #10210616, MAS ID #0040210006.
Tenorite
Formula: CuO
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 174; Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Titanite
Formula: CaTi(SiO4)O
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
'Tourmaline'
Formula: A(D3)G6(Si6O18)(BO3)3X3Z
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.
Zircon
Formula: Zr(SiO4)
Reference: Jones, R.W. & W.E. Wilson (1983), The Ray mine, Min.Rec.: 14(5): 311-322.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Bornite2.BA.15Cu5FeS4
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Galena2.CD.10PbS
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
'Tennantite'2.GB.05Cu6(Cu4X2)As4S12S
Group 3 - Halides
Chlorargyrite3.AA.15AgCl
Halite3.AA.20NaCl
Group 4 - Oxides and Hydroxides
Cuprite4.AA.10Cu2O
var: Chalcotrichite4.AA.10Cu2O
Delafossite4.AB.15CuFeO2
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
Rutile4.DB.05TiO2
Tenorite4.AB.10CuO
Group 5 - Nitrates and Carbonates
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Anhydrite7.AD.30CaSO4
Baryte7.AD.35BaSO4
Brochantite7.BB.25Cu4(SO4)(OH)6
Gypsum7.CD.40CaSO4 · 2H2O
Halotrichite7.CB.85FeAl2(SO4)4 · 22H2O
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Group 8 - Phosphates, Arsenates and Vanadates
Descloizite8.BH.40PbZn(VO4)(OH)
Libethenite8.BB.30Cu2(PO4)(OH)
Metatorbernite8.EB.10Cu(UO2)2(PO4)2 · 8H2O
Mimetite8.BN.05Pb5(AsO4)3Cl
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Group 9 - Silicates
Andalusite9.AF.10Al2(SiO4)O
Bementite9.EE.05Mn7Si6O15(OH)8
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Dioptase9.CJ.30CuSiO3 · H2O
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
'Halloysite'9.ED.10Al2(Si2O5)(OH)4
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Laumontite9.GB.10CaAl2Si4O12 · 4H2O
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Neotocite9.ED.20(Mn,Fe,Mg)SiO3 · H2O
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Orthoclase9.FA.30K(AlSi3O8)
Talc9.EC.05Mg3Si4O10(OH)2
Titanite9.AG.15CaTi(SiO4)O
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Allanite Group'-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chlorite Group'-
'Garnet Group'-X3Z2(SiO4)3
'Gem Silica'-
Halloysite-10Å-Al2Si2O5(OH)4 · 2H2O
'Heulandite subgroup'-
'Hornblende'-
'Hydromuscovite'-
'Monazite'-
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
3 <ø < 4
'Tennantite'3.3.6.2Cu6(Cu4X2)As4S12S
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Tenorite4.2.3.1CuO
A2X3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
AX2
Rutile4.4.1.1TiO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
ABX2
Delafossite7.1.1.1CuFeO2
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX
Chlorargyrite9.1.4.1AgCl
Halite9.1.1.1NaCl
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anhydrite28.3.2.1CaSO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
AB2(XO4)4·H2O
Halotrichite29.7.3.2FeAl2(SO4)4 · 22H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Brochantite30.1.3.1Cu4(SO4)(OH)6
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Metatorbernite40.2a.13.2Cu(UO2)2(PO4)2 · 8H2O
Torbernite40.2a.13.1Cu(UO2)2(PO4)2 · 12H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Descloizite41.5.2.1PbZn(VO4)(OH)
A2(XO4)Zq
Libethenite41.6.6.2Cu2(PO4)(OH)
A5(XO4)3Zq
Mimetite41.8.4.2Pb5(AsO4)3Cl
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Andalusite52.2.2b.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Dioptase61.1.3.1CuSiO3 · H2O
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
'Halloysite'71.1.1.4Al2(Si2O5)(OH)4
Neotocite71.1.5.4(Mn,Fe,Mg)SiO3 · H2O
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Nontronite71.3.1a.3Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Orthoclase76.1.1.1K(AlSi3O8)
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Laumontite77.1.1.4CaAl2Si4O12 · 4H2O
Group 78 - Unclassified Silicates
Bementite78.5.2.1Mn7Si6O15(OH)8
Unclassified Minerals, Mixtures, etc.
'Allanite Group'-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chlorite Group'-
Cuprite
var: Chalcotrichite
-Cu2O
'Garnet Group'-X3Z2(SiO4)3
'Gem Silica'-
Halloysite-10Å-Al2Si2O5(OH)4 · 2H2O
'Heulandite subgroup'-
'Hornblende'-
'Hydromuscovite'-
Kaolinite-Al2(Si2O5)(OH)4
'Monazite'-
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Quartz
var: Chalcedony
-SiO2
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z

List of minerals for each chemical element

HHydrogen
H DioptaseCuSiO3 · H2O
H GypsumCaSO4 · 2H2O
H MalachiteCu2(CO3)(OH)2
H AzuriteCu3(CO3)2(OH)2
H LaumontiteCaAl2Si4O12 · 4H2O
H LibetheniteCu2(PO4)(OH)
H AluniteKAl3(SO4)2(OH)6
H BrochantiteCu4(SO4)(OH)6
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H DescloizitePbZn(VO4)(OH)
H Goethiteα-Fe3+O(OH)
H HalloysiteAl2(Si2O5)(OH)4
H HalotrichiteFeAl2(SO4)4 · 22H2O
H KaoliniteAl2(Si2O5)(OH)4
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H Neotocite(Mn,Fe,Mg)SiO3 · H2O
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H TalcMg3Si4O10(OH)2
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
H ApatiteCa5(PO4)3(Cl/F/OH)
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H JarositeKFe3+ 3(SO4)2(OH)6
H MuscoviteKAl2(AlSi3O10)(OH)2
H TorberniteCu(UO2)2(PO4)2 · 12H2O
H BementiteMn7Si6O15(OH)8
H Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
H MetatorberniteCu(UO2)2(PO4)2 · 8H2O
BBoron
B TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
CCarbon
C CalciteCaCO3
C MalachiteCu2(CO3)(OH)2
C AzuriteCu3(CO3)2(OH)2
C SideriteFeCO3
OOxygen
O Cuprite (var: Chalcotrichite)Cu2O
O CupriteCu2O
O DioptaseCuSiO3 · H2O
O GypsumCaSO4 · 2H2O
O CalciteCaCO3
O MalachiteCu2(CO3)(OH)2
O AzuriteCu3(CO3)2(OH)2
O LaumontiteCaAl2Si4O12 · 4H2O
O LibetheniteCu2(PO4)(OH)
O AluniteKAl3(SO4)2(OH)6
O OrthoclaseK(AlSi3O8)
O Quartz (var: Chalcedony)SiO2
O BaryteBaSO4
O BrochantiteCu4(SO4)(OH)6
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O DelafossiteCuFeO2
O DescloizitePbZn(VO4)(OH)
O Goethiteα-Fe3+O(OH)
O HalloysiteAl2(Si2O5)(OH)4
O HalotrichiteFeAl2(SO4)4 · 22H2O
O KaoliniteAl2(Si2O5)(OH)4
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O Neotocite(Mn,Fe,Mg)SiO3 · H2O
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O QuartzSiO2
O TalcMg3Si4O10(OH)2
O TenoriteCuO
O TitaniteCaTi(SiO4)O
O ZirconZr(SiO4)
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O HematiteFe2O3
O Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
O AndalusiteAl2(SiO4)O
O ApatiteCa5(PO4)3(Cl/F/OH)
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O Garnet GroupX3Z2(SiO4)3
O IlmeniteFe2+TiO3
O JarositeKFe3+ 3(SO4)2(OH)6
O MagnetiteFe2+Fe23+O4
O MuscoviteKAl2(AlSi3O10)(OH)2
O RutileTiO2
O TorberniteCu(UO2)2(PO4)2 · 12H2O
O TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
O BementiteMn7Si6O15(OH)8
O Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
O MimetitePb5(AsO4)3Cl
O AnhydriteCaSO4
O MetatorberniteCu(UO2)2(PO4)2 · 8H2O
O SideriteFeCO3
FFluorine
F ApatiteCa5(PO4)3(Cl/F/OH)
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
NaSodium
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Na HaliteNaCl
MgMagnesium
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Mg Neotocite(Mn,Fe,Mg)SiO3 · H2O
Mg TalcMg3Si4O10(OH)2
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
AlAluminium
Al LaumontiteCaAl2Si4O12 · 4H2O
Al AluniteKAl3(SO4)2(OH)6
Al OrthoclaseK(AlSi3O8)
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al HalloysiteAl2(Si2O5)(OH)4
Al HalotrichiteFeAl2(SO4)4 · 22H2O
Al KaoliniteAl2(Si2O5)(OH)4
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al AndalusiteAl2(SiO4)O
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
SiSilicon
Si DioptaseCuSiO3 · H2O
Si LaumontiteCaAl2Si4O12 · 4H2O
Si OrthoclaseK(AlSi3O8)
Si Quartz (var: Chalcedony)SiO2
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si HalloysiteAl2(Si2O5)(OH)4
Si KaoliniteAl2(Si2O5)(OH)4
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si Neotocite(Mn,Fe,Mg)SiO3 · H2O
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si QuartzSiO2
Si TalcMg3Si4O10(OH)2
Si TitaniteCaTi(SiO4)O
Si ZirconZr(SiO4)
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
Si AndalusiteAl2(SiO4)O
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si Garnet GroupX3Z2(SiO4)3
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
Si BementiteMn7Si6O15(OH)8
Si Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
PPhosphorus
P LibetheniteCu2(PO4)(OH)
P ApatiteCa5(PO4)3(Cl/F/OH)
P TorberniteCu(UO2)2(PO4)2 · 12H2O
P MetatorberniteCu(UO2)2(PO4)2 · 8H2O
SSulfur
S PyriteFeS2
S ChalcopyriteCuFeS2
S GypsumCaSO4 · 2H2O
S ChalcociteCu2S
S GalenaPbS
S SphaleriteZnS
S AluniteKAl3(SO4)2(OH)6
S BaryteBaSO4
S BrochantiteCu4(SO4)(OH)6
S HalotrichiteFeAl2(SO4)4 · 22H2O
S MolybdeniteMoS2
S BorniteCu5FeS4
S JarositeKFe3+ 3(SO4)2(OH)6
S CovelliteCuS
S AnhydriteCaSO4
S TennantiteCu6(Cu4X2)As4S12S
ClChlorine
Cl ApatiteCa5(PO4)3(Cl/F/OH)
Cl ChlorargyriteAgCl
Cl HaliteNaCl
Cl MimetitePb5(AsO4)3Cl
KPotassium
K AluniteKAl3(SO4)2(OH)6
K OrthoclaseK(AlSi3O8)
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
K JarositeKFe3+ 3(SO4)2(OH)6
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca GypsumCaSO4 · 2H2O
Ca CalciteCaCO3
Ca LaumontiteCaAl2Si4O12 · 4H2O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca TitaniteCaTi(SiO4)O
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca AnhydriteCaSO4
TiTitanium
Ti TitaniteCaTi(SiO4)O
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
VVanadium
V DescloizitePbZn(VO4)(OH)
MnManganese
Mn Neotocite(Mn,Fe,Mg)SiO3 · H2O
Mn BementiteMn7Si6O15(OH)8
FeIron
Fe PyriteFeS2
Fe ChalcopyriteCuFeS2
Fe DelafossiteCuFeO2
Fe Goethiteα-Fe3+O(OH)
Fe HalotrichiteFeAl2(SO4)4 · 22H2O
Fe Neotocite(Mn,Fe,Mg)SiO3 · H2O
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe HematiteFe2O3
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Fe BorniteCu5FeS4
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe IlmeniteFe2+TiO3
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe MagnetiteFe2+Fe23+O4
Fe SideriteFeCO3
CuCopper
Cu Cuprite (var: Chalcotrichite)Cu2O
Cu CupriteCu2O
Cu DioptaseCuSiO3 · H2O
Cu ChalcopyriteCuFeS2
Cu MalachiteCu2(CO3)(OH)2
Cu AzuriteCu3(CO3)2(OH)2
Cu CopperCu
Cu ChalcociteCu2S
Cu LibetheniteCu2(PO4)(OH)
Cu BrochantiteCu4(SO4)(OH)6
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu DelafossiteCuFeO2
Cu TenoriteCuO
Cu BorniteCu5FeS4
Cu TorberniteCu(UO2)2(PO4)2 · 12H2O
Cu CovelliteCuS
Cu TennantiteCu6(Cu4X2)As4S12S
Cu MetatorberniteCu(UO2)2(PO4)2 · 8H2O
ZnZinc
Zn SphaleriteZnS
Zn DescloizitePbZn(VO4)(OH)
AsArsenic
As MimetitePb5(AsO4)3Cl
As TennantiteCu6(Cu4X2)As4S12S
ZrZirconium
Zr ZirconZr(SiO4)
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag SilverAg
Ag ChlorargyriteAgCl
BaBarium
Ba BaryteBaSO4
AuGold
Au GoldAu
PbLead
Pb GalenaPbS
Pb DescloizitePbZn(VO4)(OH)
Pb MimetitePb5(AsO4)3Cl
UUranium
U TorberniteCu(UO2)2(PO4)2 · 12H2O
U MetatorberniteCu(UO2)2(PO4)2 · 8H2O

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A) In-text Citation No.
University of Arizona Bulletin 41 (1916-17) Mineralogy of Useful Minerals in Arizona: 28, 29, 46.
Ransome, F.L. (1919) The copper deposits of Ray and Miami, Arizona. USGS Professional Paper 115.
Parsons, A.B. (1933) Ray Consolidated Chief in the Porphyry Coppers. A.I.M.E., New York, 1st. edition: 184-203.
Schwartz, G.M. (1934) Paragenesis of the oxidized ores of copper. Economic Geology: 29: 55-75.
Schwartz, G.M. (1947) Hydrothermal alteration in the 'porphyry copper' deposits. Economic Geology: 42: 319-352.
USGS (1949), Winkelman, Arizona, quadrangle 7.5 minute series topographic map, scale 1:24,000.
Schwartz, G.M. (1952) Chlorite-calcite pseudomorphs after orthoclase phenocrysts, Ray, Arizona. Economic Geology: 47: 665-672.
Clarke, O.M., Jr. (1953) Geochemical prospecting for copper at Ray, Arizona. Economic Geology: 48: 39-45.
Lewis, D.V. (1955) Relationships of ore bodies to dikes and sills. Economic Geology: 50: 495-516.
USGS (1964), Hayden, Arizona, quadrangle 7.5 minute topo map, scale 1:24,000.
USGS (1964), Sonora, Arizona, quadrangle 7.5 minute series topographic map, scale 1:24,000.
USGS (1964), Teapot Mountain, Arizona, quadrangle, 7.5 minute topographic map, Pinal County, scale 1:24,000.
Kennecott Copper (1966), Annual Report 1966. (surface plant)
Metz, R.A. and Rose, A.W. (1966) Geology of the Ray copper deposit, Ray, Arizona, in Titley, S.R. and Hicks, C.L. (eds.) Geology of the porphyry copper deposits, southwestern North America. University of Arizona Press, Tucson: 177-188.
Titley, Spencer R. and Hicks (1966), Geology of the Porphyry Copper Deposits.
Kennecott Copper (1967), Annual Report. (crusher)
Stephens, J.D. and Metz, R.A. (1967) The occurrence of copper-bearing clay minerals in oxidized portions of the disseminated copper deposit at Ray, Arizona (abstract). Economic Geology: 62: 876-877.
Skillings Mining Review (1969): 9/6/69. (pilot plant cost)
Paydirt (1970): 5/18/70 (history of property, mine equipment, crushing, drilling, trucks, shovels)
Skillings Mining Review (1970): 6/20/70. (crushing, vat leach, electrowinning)
Cornwall et al. (1971) USGS Map GQ-1021.
Pay Dirt (1971): 4/71. (water diversion project)
Throop, A.H. and Buseck, P.R. (1971) Nature and origin of black chrysocolla at the Inspiration mine, Arizona. Economic Geology: 66: 1168-1175.
Banks, N.G. and Stuckless, J.S. (1973), Chronology of intrusion and ore deposition at Ray, Arizona; Part II, fission-track ages; Economic Geology: 68: 657-664.
Skillings Mining Review (1973), 10/1973. (vat leach expansion, cone precipatators)
World Mining (1973): 8/73. (mine equipment)
Pay Dirt (1974): 3/25/74. (mine equipment, tailings, expansion, railroad)
Phillips et al. (1974) Economic Geology: 69: 1237-1250.
Skillings Mining Review (1974), 1/5/74. (milling)
Skillings Mining Review (1974), 2/74. (vat leach expansion)
Skillings Mining Review (1974): 4/27/74. (underground leach)
White, J.S., Jr. (1974) What's new in minerals? Mineralogical Record: 5: 233-236.
Pay Dirt (1976), 6/23/76. (milling rate)
Pay Dirt (1976): 11/22/76. (solvent-extraction pilot plant)
World Mining (1976): 6/76. (vat leach)
Engineering and Mining Journal (1977): 6/77. (size of ore body)
Kennezonian (1977), Spring 1977. (marketing cathodes)
Kennezonian (1977), Summer 1977. (exploration)
Wilson, W.E. (1977) What's new in minerals? (Ray chrysocolla). Mineralogical Record: 8: 58.
Baer, R.L. (1978), File Report - Ray Mine, Leach Plant, Concentrator and Smelter - Visited 4/18/78 (information on all phases of operation)
Kennezonian (1978), Spring 1978. (drilling)
Pay Dirt (1978): 1/78. (tailings reclamation)
Roman, Sheffer and Stone (1978), Draft Information Circular (IC): "Copper Leaching Practices In Western U.S." (dump leach description)
USGS (1978), Mesa, Arizona, quadrangle, 1 Degee X 2 Degrees Series topographic map, 1978 Revision, scale 1:250,000.
Sundt, M.M. (1979) Constructing Plant for Kennecott's Ray Mines. Skillings Mining Review March 31, 1979: 6.
Engineering & Mining Journal (1980), Kennecott's New SX Plant on Stream: June, 1980: 35, 39.
Thompson, W. (1980) Chrysocolla pseudomorphs from Ray, Arizona. Mineralogical Record: 11: 248-250.
Arizona Department of Mines & Mineral Resources (1981), Primary Copper Industry of Arizona Special Reports No. 5.
World Mining (1981), September, 1981: 49. (1977-1980 production)
Arizona Department of Mines & Mineral Resources Primary Copper Industry of Arizona Special Reports No. 6 (1982).
Arizona Pay Dirt (1982), Kennecott Surprises Industry by Closing Ray, Chino Indefinitely: March 1982: Front Cover and pp._____.
Arizona Pay Dirt (1982), Ray Has Been Consistent Producer From Underground, Open pit: March 1982: 6-8, 10-11.
Banks, N.G. (1982) Sulfur and copper in magma and rocks: Ray porphyry copper deposit, Pinal County, Arizona. In: Advances in Geology of Porphyry Copper Deposits, Southwestern North America (S.R. Titley, editor). University of Arizona Press, Tucson, Arizona (227-257).
Engineering and Mining Journal (1977): 6/1977. (exploration, ore body dimensions, mine equipment, mill, vat leach, dump leach, electrowinning, railroad)
Kennezonian, Summer (1977) (Exploration) Arizona Pay Dirt.
Kennecott Surprises Industry by Closing Ray, Chino Indefinitely (March 1982) Front cover and p. 4-5.
Sohio (1982), Annual Report: 27-28.
Arizona Pay Dirt (1983) Kennecott Reopening Ray Mine and Mill, Calling Back Workers. August 1983: 18A-19A.
Jones, R.W. and Wilson, W.E. (1983) The Ray Mine. Mineralogical Record: 14: 311-322.
Walenga, Karen (1985) Kennecott's Ray Mines Division is Having a Tough Time. Arizona Pay Dirt: June 1985: 3A.
ASARCO Incorporated (1986), Annual Report: 5, 24.
Epler, B. (1986), Copper Firms Get Concessionary Contracts Without Strikes, Southwestern Pay Dirt: August, 1986: 12a-14a.
Southwestern Pay Dirt (1987), Modifying Ray SX-EW to Treat Sulphide Leach: February 1987: 4A-6A.
Dayton, S.H. (1988) ASARCO hits the Mark with Arizona Copper Expansion. Engineering and Mining Journal: 189(9): 30-50.
O'Neil, Tim (1989) ASARCO: Plant Expansions and Modernizations Continue Amidst Company Restructuring. Mining Engineering: 6/89: 430-434.
Walenga, Karen (1989) Mission, Ray Expansion to Assure Copper Feed. Southwestern Paydirt, March 1989: 4A-8A.
American Mining Congress Journal (1990): 9/90: 20.
Mining Engineering (1990): 5/90: 414.
Phillips, K.A., Beard, R.R., Niemuth, N.J., and Bain, D.R. (1991) Active Mines in Arizona – 1992. Arizona Department of Mines and Mineral Resources Directory 39, 20 pp.
Dillard, Gary (1992) Expansion Doubles Production, Lowers Costs. Southwestern Pay Dirt No. 636: 6/92: 4A-11A.
Dillard, Gary (1992) Ray Greatly Expands Ore Reserves Without Drilling a Hole. Southwestern Pay Dirt: 9/92: 3A.
Kilburn, John (1992) Ray Expansion Boosts ASARCO Copper Output. Northern Miner: 11/23/92: 1-2.
Metal Bulletin Monthly (1992): 8/92: 43.
Mining Engineering (1992): 4/92: 294.
Mining Journal (1992): 319(8185) (8/7/92): 104.
Mining Record (1992): 3/11/92: 5.
Mining Record (1992): 8/26/92: 14.
Niemuth, N.J. and Phillips, K.A. (1992) Copper Oxide Resources. Arizona Department of Mines & Mineral Resources Open File Report 92-10: 15 (Table 1).
Sawyer, M.B., Gurmendi, A.C., Daley, M.R., and Howell, S.B. (1992) Principal Deposits of Strategic and Critical Minerals in Arizona, U.S. Bureau of Mines Special Publication, 334 pp.
Skillings Mining Review (1992): 3/7/92: 7.
Skillings Mining Review (1992): 8/8/92: 13.
ASARCO, Incorporated (1993), Annual Report: 5.
ASARCO Incorporated (1993), Form 10-K: A15, A18.
Dillard, Gary (1993) Ray Complex is Hit Hardest by Rail link Washout. Southwestern Pay Dirt: 2/93: 4A-10A.
McGhee, S.A. (1993), Ray Modernization and Concentrator Expansion Project, Preprint Number 93-36, Society of Mining Engineers Annual Meeting February 15-18, 1993, 7pp.
Coughlin, Patrick J. (1994), Commissioning ASARCO's Ray Expansion, Mining Engineering: 7/94: 637-640.
Mining Record (1994): 105(31) (8/17/94): 6, 7.
ASARCO, Incorporated (1995), Annual Report: 7.
Caney, Derek J. (1995), ASARCO Overcomes Ray Problems, American Metal Market: 103(30) (2/14/95): 2.
Caney, Derek J. (1995), American Metal Market: 8-9-95: 2.
Anthony, J.W. et al. (1995) Mineralogy of Arizona, 3rd. ed.: 132, 163, 170, 174, 186, 197, 200, 201, 213, 243, 250, 299, 302, 315.
Southwestern Pay Dirt (1995): 2/95: 3a.
U.S. Bureau of Mines (1995), Minerals Availability System/Mineral Industry Location System (MAS/MILS), U.S. Bureau of Mines, file ID #0040210006.
Skillings Mining Review (1996), ASARCO Curtails Operations at Ray Complex: October 5, 1996: 11.
Force E. R. (1998), Laramide alteration of Proterozoic diabase: a likely contributor of Copper to Porphyry systems in the Dripping Spring Mountains area, southeastern Arizona, Economic Geology: 93: 171-183.
Porter, T.M. (1998), An overview of the World's porphyry and other hydrothermal copper & gold deposits and their distribution; in Porter, T. M., ed., Porphyry and Hydrothermal Copper and Gold Deposits: a global perspective, PACRIM '98 Conference Proceedings, Australian Mineral Foundation: 3-17.
Kendrick, M.A., Burgess, R., Pattrick, R.A.D. and Turner, G. (2001), Halogen and Ar-Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques; Chemical Geology: 177: 351-370.
USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10210616.
Arizona Department of Mines and Mineral Resources, Primary Copper Industry of Arizona Special Report, No. 7 (Ray Mine - 1983 production)
Arizona Department of Mines and Mineral Resources, Primary Copper Industry of Arizona Special Report, No. 8. (Ray Mine - 1984 production)
Arizona Department of Mines and Mineral Resources, Primary Copper Industry of Arizona Special Report, No. 10. (Ray Mine - 1985 production)
Arizona Department of Mines and Mineral Resources, Primary Copper Industry of Arizona Special Report, No. 13. (Ray Mine - 1986 production)
Arizona Department of Mines and Mineral Resources, Primary Copper Industry of Arizona Special Report, No. 14. (1987 production)
USGS MRDS ID #M000327.
American Smelting and Refining Company (1998), Form 10K: A15.
Mine Safety and Health Administration (MSHA), MSHA file No. 0200150.
ASARCO Incorporated, ASARCO Ray Complex- Ray Modernization and Concentrator Expansion Project, Project Description.

Other Databases

USGS MRDS Record:10210616

External Links

www.portergeo.com.au (The Porter GeoConsultancy webpages for Ray contain a very complete description of the geology.) Accessed on 9/28/2010 by USGS.

Localities in this Region

Other Regions, Features and Areas containing this locality

North America
North America PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2019年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2019.12.6 10:29:11 Page generated: 2019.12.5 12:05:37
Go to top of page