SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo Galleries今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Ladolam Au deposit (Lihir Mine), Lihir Island, New Ireland Province, Papua New Guineai
Regional Level Types
Ladolam Au deposit (Lihir Mine)Deposit
Lihir IslandIsland
New Ireland ProvinceProvince
Papua New GuineaCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
3° 7' 36'' South , 152° 37' 56'' East
Latitude & Longitude (decimal):
Locality type:


A gold mine and the world's largest known low-sulfidation epithermal gold deposit. It is located in an active hydrothermal system.
Ore formation involved an earlier un-economic porphyry stage, and a later, overprinting low sulphidation advanced argillic phase accompanying the bulk of the gold.

Exploration since 1983 has defined several adjacent and partly overlapping deposits: Lienetz, Minifie, Coastal, and Kapit with adjacent satellite deposits of Borefields and Camp. The bulk of the known mineralisation is in Minifie and Lienetz.

Regions containing this locality

North Bismarck PlateTectonic Plate

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


32 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Actinolite
Formula: ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Albite
Formula: Na(AlSi3O8)
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Albite-Anorthite Series'
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Anatase
Formula: TiO2
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37(1),61-74.
Anhydrite
Formula: CaSO4
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir. Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37(1),61-74.; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.; Sykora, S., Selley, D., Cooke, D. R., & Harris, A. C. (2018). The structure and significance of anhydrite-bearing vein arrays, Lienetz orebody, Lihir gold deposit, Papua New Guinea. Economic Geology, 113(1), 237-270.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Arsenopyrite
Formula: FeAsS
Reference: Gemmell, J,B., Sharpe, R., Jonasson, I,R., Herzig, P.M. (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Economic Geology 99(8), 1711-1725. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Baryte
Formula: BaSO4
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.; Sykora, S., Selley, D., Cooke, D. R., & Harris, A. C. (2018). The structure and significance of anhydrite-bearing vein arrays, Lienetz orebody, Lihir gold deposit, Papua New Guinea. Economic Geology, 113(1), 237-270.
Calcite
Formula: CaCO3
Reference: Gemmell, J,B., Sharpe, R., Jonasson, I,R., Herzig, P.M. (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Economic Geology 99(8), 1711-1725. Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Celestine
Formula: SrSO4
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Chalcopyrite
Formula: CuFeS2
Reference: Gemmell, J,B., Sharpe, R., Jonasson, I,R., Herzig, P.M. (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Economic Geology 99(8), 1711-1725. Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Chlorite Group'
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Clays'
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Dolomite
Formula: CaMg(CO3)2
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Electrum'
Formula: (Au, Ag)
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Galena
Formula: PbS
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. Gemmell, J,B., Sharpe, R., Jonasson, I,R., Herzig, P.M. (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Economic Geology 99(8), 1711-1725. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Gold
Formula: Au
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'K Feldspar'
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir; Daniel Müller, Klaus Kaminski, Stephan Uhlig, Torsten Graupner, Peter M. Herzig, Steve Hunt (2002) The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74 ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'K Feldspar var: Adularia'
Formula: KAlSi3O8
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir. Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37(1),61-74.; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.; Sykora, S., Selley, D., Cooke, D. R., & Harris, A. C. (2018). The structure and significance of anhydrite-bearing vein arrays, Lienetz orebody, Lihir gold deposit, Papua New Guinea. Economic Geology, 113(1), 237-270.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Daniel Müller, Klaus Kaminski, Stephan Uhlig, Torsten Graupner, Peter M. Herzig, Steve Hunt (2002) The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74 ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Marcasite
Formula: FeS2
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir; Daniel Müller, Klaus Kaminski, Stephan Uhlig, Torsten Graupner, Peter M. Herzig, Steve Hunt (2002) The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74 ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Mica Group'
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Molybdenite
Formula: MoS2
Reference: Econ Geol (2004) 99:1711-1725; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Daniel Müller, Klaus Kaminski, Stephan Uhlig, Torsten Graupner, Peter M. Herzig, Steve Hunt (2002) The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74
Muscovite var: Illite
Formula: K0.65Al2.0[Al0.65Si3.35O10](OH)2
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Opal
Formula: SiO2 · nH2O
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir
Orthoclase
Formula: K(AlSi3O8)
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Pyrite
Formula: FeS2
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir. Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Pyrrhotite
Formula: Fe7S8
Reference: Gemmell, J,B., Sharpe, R., Jonasson, I,R., Herzig, P.M. (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Economic Geology 99(8), 1711-1725. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Quartz
Formula: SiO2
Reference: http://www.portergeo.com.au/tours/pacificgold99/pg99m1.asp#lihir. Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Quartz var: Chalcedony
Formula: SiO2
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Rhodochrosite
Formula: MnCO3
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Rutile
Formula: TiO2
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Sphalerite
Formula: ZnS
Reference: Gemmell, J,B., Sharpe, R., Jonasson, I,R., Herzig, P.M. (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Economic Geology 99(8), 1711-1725. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Tennantite
Formula: Cu6Cu4(Fe2+,Zn)2As4S12S
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Tetrahedrite
Formula: Cu6Cu4(Fe2+,Zn)2Sb4S12S
Reference: Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37:61-74. ; Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
'Tourmaline'
Formula: A(D3)G6(Si6O18)(BO3)3X3Z
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Tremolite
Formula: ☐{Ca2}{Mg5}(Si8O22)(OH)2
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Vermiculite
Formula: Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Reference: Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Electrum'1.AA.05(Au, Ag)
Gold1.AA.05Au
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Arsenopyrite2.EB.20FeAsS
Chalcopyrite2.CB.10aCuFeS2
Galena2.CD.10PbS
Marcasite2.EB.10aFeS2
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Tennantite2.GB.05Cu6Cu4(Fe2+,Zn)2As4S12S
Tetrahedrite2.GB.05Cu6Cu4(Fe2+,Zn)2Sb4S12S
Group 4 - Oxides and Hydroxides
Anatase4.DD.05TiO2
Magnetite4.BB.05Fe2+Fe3+2O4
Opal4.DA.10SiO2 · nH2O
Quartz4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
Rutile4.DB.05TiO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Dolomite5.AB.10CaMg(CO3)2
Rhodochrosite5.AB.05MnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Anhydrite7.AD.30CaSO4
Baryte7.AD.35BaSO4
Celestine7.AD.35SrSO4
Group 9 - Silicates
Actinolite9.DE.10☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Albite9.FA.35Na(AlSi3O8)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Illite9.EC.15K0.65Al2.0[Al0.65Si3.35O10](OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Orthoclase9.FA.30K(AlSi3O8)
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Tremolite9.DE.10☐{Ca2}{Mg5}(Si8O22)(OH)2
Vermiculite9.EC.50Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chlorite Group'-
'Clays'-
'K Feldspar'-
'var: Adularia'-KAlSi3O8
'Mica Group'-
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Marcasite2.12.2.1FeS2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
3 <ø < 4
Tennantite3.3.6.2Cu6Cu4(Fe2+,Zn)2As4S12S
Tetrahedrite3.3.6.1Cu6Cu4(Fe2+,Zn)2Sb4S12S
Group 4 - SIMPLE OXIDES
AX2
Anatase4.4.4.1TiO2
Rutile4.4.1.1TiO2
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Rhodochrosite14.1.1.4MnCO3
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anhydrite28.3.2.1CaSO4
Baryte28.3.1.1BaSO4
Celestine28.3.1.2SrSO4
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Mg-Fe-Mn-Li subgroup
Tremolite66.1.3a.1☐{Ca2}{Mg5}(Si8O22)(OH)2
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
var: Illite71.2.2d.2K0.65Al2.0[Al0.65Si3.35O10](OH)2
Phlogopite71.2.2b.1KMg3(AlSi3O10)(OH)2
Vermiculite71.2.2d.3Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Orthoclase76.1.1.1K(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
Actinolite-☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
'Albite-Anorthite Series'-
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chlorite Group'-
'Clays'-
'Electrum'-(Au, Ag)
'K Feldspar'-
'var: Adularia'-KAlSi3O8
Kaolinite-Al2(Si2O5)(OH)4
'Mica Group'-
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Quartz
var: Chalcedony
-SiO2
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z

List of minerals for each chemical element

HHydrogen
H AluniteKAl3(SO4)2(OH)6
H OpalSiO2 · nH2O
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
H Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
H Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
H ApatiteCa5(PO4)3(Cl/F/OH)
H PhlogopiteKMg3(AlSi3O10)(OH)2
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
H VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
H KaoliniteAl2(Si2O5)(OH)4
BBoron
B TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
CCarbon
C CalciteCaCO3
C DolomiteCaMg(CO3)2
C RhodochrositeMnCO3
OOxygen
O AluniteKAl3(SO4)2(OH)6
O OpalSiO2 · nH2O
O QuartzSiO2
O K Feldspar (var: Adularia)KAlSi3O8
O AnhydriteCaSO4
O CalciteCaCO3
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
O MagnetiteFe2+Fe23+O4
O AnataseTiO2
O Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
O Quartz (var: Chalcedony)SiO2
O MuscoviteKAl2(AlSi3O10)(OH)2
O Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
O Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
O AlbiteNa(AlSi3O8)
O ApatiteCa5(PO4)3(Cl/F/OH)
O OrthoclaseK(AlSi3O8)
O PhlogopiteKMg3(AlSi3O10)(OH)2
O RutileTiO2
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
O Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
O VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
O BaryteBaSO4
O CelestineSrSO4
O DolomiteCaMg(CO3)2
O KaoliniteAl2(Si2O5)(OH)4
O RhodochrositeMnCO3
FFluorine
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
F ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Na AlbiteNa(AlSi3O8)
MgMagnesium
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Mg Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Mg PhlogopiteKMg3(AlSi3O10)(OH)2
Mg Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
Mg VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Mg DolomiteCaMg(CO3)2
AlAluminium
Al AluniteKAl3(SO4)2(OH)6
Al K Feldspar (var: Adularia)KAlSi3O8
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Al Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al AlbiteNa(AlSi3O8)
Al OrthoclaseK(AlSi3O8)
Al PhlogopiteKMg3(AlSi3O10)(OH)2
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Al KaoliniteAl2(Si2O5)(OH)4
SiSilicon
Si OpalSiO2 · nH2O
Si QuartzSiO2
Si K Feldspar (var: Adularia)KAlSi3O8
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Si Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
Si Quartz (var: Chalcedony)SiO2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Si AlbiteNa(AlSi3O8)
Si OrthoclaseK(AlSi3O8)
Si PhlogopiteKMg3(AlSi3O10)(OH)2
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
Si Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
Si VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Si KaoliniteAl2(Si2O5)(OH)4
PPhosphorus
P ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
S AluniteKAl3(SO4)2(OH)6
S AnhydriteCaSO4
S PyriteFeS2
S MarcasiteFeS2
S ChalcopyriteCuFeS2
S MolybdeniteMoS2
S ArsenopyriteFeAsS
S SphaleriteZnS
S GalenaPbS
S PyrrhotiteFe7S8
S TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
S TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
S BaryteBaSO4
S CelestineSrSO4
S AcanthiteAg2S
ClChlorine
Cl ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
K AluniteKAl3(SO4)2(OH)6
K K Feldspar (var: Adularia)KAlSi3O8
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
K Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
K OrthoclaseK(AlSi3O8)
K PhlogopiteKMg3(AlSi3O10)(OH)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca AnhydriteCaSO4
Ca CalciteCaCO3
Ca Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
Ca DolomiteCaMg(CO3)2
TiTitanium
Ti AnataseTiO2
Ti RutileTiO2
MnManganese
Mn RhodochrositeMnCO3
FeIron
Fe PyriteFeS2
Fe MarcasiteFeS2
Fe ChalcopyriteCuFeS2
Fe ArsenopyriteFeAsS
Fe PyrrhotiteFe7S8
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Fe MagnetiteFe2+Fe23+O4
Fe TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
Fe TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
Fe Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Fe VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
CuCopper
Cu ChalcopyriteCuFeS2
Cu TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
Cu TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
ZnZinc
Zn SphaleriteZnS
Zn TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
Zn TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
AsArsenic
As ArsenopyriteFeAsS
As TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
SrStrontium
Sr CelestineSrSO4
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag Electrum(Au, Ag)
Ag AcanthiteAg2S
SbAntimony
Sb TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
BaBarium
Ba BaryteBaSO4
AuGold
Au GoldAu
Au Electrum(Au, Ag)
PbLead
Pb GalenaPbS

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Moyle, A.L., Doyle, B.J., Hoogvliet, H., Ware, A.R. (1990) Ladolam gold deposit, Lihir Island: Monograph Series - Australasian Institute of Mining and Metallurgy, 14, 1793-1805.
Müller, D., Kaminski, K., Uhlig, S., Graupner, T., Herzig, P.M., Hunt, S. (2002) The transition from porphyry-to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Mineralium Deposita 37(1),61-74.
Gemmell, J,B., Sharpe, R., Jonasson, I,R., Herzig, P.M. (2004) Sulfur Isotope Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea. Economic Geology 99(8), 1711-1725.
Simmons, S.F., Brown, K.L. (2006) Gold in Magmatic Hydrothermal Solutions and the Rapid Formation of a Giant Ore Deposit. Science, vol. 314, No. 5797, 288-291.
Blackwell, J. L., Cooke, D. R., McPhie, J., & Simpson, K. A. (2014). Lithofacies associations and evolution of the volcanic host succession to the Minifie ore zone: Ladolam gold deposit, Lihir Island, Papua New Guinea. Economic Geology, 109(4), 1137-1160.
Sykora, S., Selley, D., Cooke, D. R., & Harris, A. C. (2018). The structure and significance of anhydrite-bearing vein arrays, Lienetz orebody, Lihir gold deposit, Papua New Guinea. Economic Geology, 113(1), 237-270.

External Links

http://en.wikipedia.org/wiki/Lihir_Island

http://www.mining-technology.com/projects/lihir/

http://agssymposium.org/media/AbsPdfs/Abstract47.pdf

http://fcms.its.utas.edu.au/scieng/codes/project.asp?lProjectId=1539

http://dsm.gsd.spc.int/public/files/meetings/01_Terrestrial_Mining_and_Mineral_Resources_Potential_of_the_Pacific_Islands_Region_Akuila_Tawake.pdf [Akuila Tawake (2012) Mineral Resources Potential and Mining in the Pacific Islands Region - Lessons Learned. Pacific-ACP States Regional Training Workshop on Geological, Technological, Biological and Environmental Aspects of Deep Sea Minerals. Tanoa International Hotel, Nadi Fiji. 13th–17th August 2012]


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2019年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2019.12.6 13:19:20 Page generated: 2019.8.7 16:35:26
Go to top of page