SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
登录注册
主页关于 MindatMindat手册Mindat的历史版权Who We Are联系我们于 Mindat.org刊登广告
捐赠给 MindatCorporate Sponsorship赞助板页已赞助的板页在 Mindat刊登 广告的广告商于 Mindat.org刊登广告
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe Elements书籍及杂志
搜索矿物的性质搜索矿物的化学Advanced Locality Search随意显示任何一 种矿物Random Locality使用minID搜索邻近产地Search Articles搜索词汇表更多搜索选项
搜索:
矿物名称:
地区产地名称:
关键字:
 
Mindat手册添加新照片Rate Photos产区编辑报告Coordinate Completion Report添加词汇表项目
Mining Companies统计会员列表Mineral Museums矿物展及活动The Mindat目录表设备设置
照片搜索Photo GalleriesSearch by Color今天最新的照片昨天最新的照片用户照片相集过去每日精选照片相集Mineral Photography

Panasqueira Mines, Covilhã, Castelo Branco, Portugali
Regional Level Types
Panasqueira MinesGroup of Mines (Active)
CovilhãMunicipality
Castelo BrancoDistrict
PortugalCountry

This page kindly sponsored by Paul De Bondt
Key
02860130014946281199427.jpg
Entry of the 'mine-city' with the large dump in the background

Panasqueira Mines, Covilhã, Castelo Branco, Portugal
Locality type:
Group of Mines (Active) - last checked 2019
Name(s) in local language(s):
Couto Mineiro da Panasqueira, Covilhã, Distrito de Castelo Branco, Portugal


Mine Information: A large tin-tungsten mine made up of multiple concessions that started production in 1898. Mining is in gently dipping stacked quartz veins that lead into mineralized wolfram-bearing schist. The mineralized zone has dimensions of approximately 2,500 m in length, varying in width from 400 m to 2,200 m, and continues to at least 500 m in depth.

Originally the longwall method or a variant with partial filling was used, but in 1986 it was changed to room-and-pillar based on an analysis of geological and geomechanical characteristics of the rock mass.

Access to the mine's main levels is by a 2.5 m x 2.8 m decline from the surface at a 14% grade. The main levels consist of a series of parallel drives that are spaced 100 m apart and which provide access to the ore passes for rail transport, and connect with ramps for movement of drilling and loading equipment.

Blocks of ore are laid out initially in 100 m x 80 m sections by driving 5 m wide tunnels, 2.2 m high. Similar crosscuts are then set off at right angles to create roughly 11 m by 11m pillars, which are ultimately trimmed to 3 m by 3 m, providing an extraction rate of 84%. Blasted ore is loaded from the stopes by a fleet of LHDs (rubber-tired low profile loaders), tipping into 1.8 m-diameter bored raises connecting to the main level boxes. Rail haulage with trolley locomotives is used to transport the ore to the shaft on Level 3, and to the 900 t-capacity main ore pass on Level 2 that provides storage for the 190 metric ton/hour jaw crusher located at the 530 m-level.

Geology: Panasqueira granite intrudes Precambrian marine shales, greywackes, and sandstones. Shales are converted into biotite cordierite andalusite hornfelses near the granite contact. Irregular barren quartz masses were formed in shales (quartz segregation lenses) during Hercynian (the geologic mountain-building event caused by the Late Paleozoic continental collision between Euramerica and Gondwana to form the supercontinent of Pangaea) regional metamorphism. Panasqueira muscovite-albite leucogranite batholith evolves upwards into a quartz-greisen cupola overlain by a quartz cap, from which related quartz veins (stockscheider) penetrate into the shales. Later subhorizontal mineralized veins follow these quartz veins.

Four stages of mineralization are known:
1) Oxide-silicate stage (280-320°C): ferberite, cassiterite in quartz veins, arsenopyrite, topaz, muscovite and tourmaline
2) Sulfide stage: arsenopyrite, pyrite, pyrrhotite, chalcopyrite, sphalerite, stannite, etc.
3) Pyrrhotite alteration stage
4) Carbonate stage: calcite and dolomite, minor sulfides

The mine has existed since 1896. There is an estimated 12,000 km of tunnels, some still working and others already abandoned. At the time of World War II, about 10,000 people worked in the mine; today (2017), approximately 370. The mine has a planned production for more than 30 years.





The industrial mining center commonly known as "Panasqueira Mines" extends over a vast area covered by the Panasqueira and Vale da Ermida Mining Fields with a total area around 20.5 km2.

Although the current mining is concentrated in about a dozen concessions, all others are the object of a systematic study for the evaluation of reserves and determination of their economic potential.

Mineralized zones: Décio Thadeu (*), supported by morphological, mineralogical and tectonic data, presented a classification that until today has been adopted and confirmed by the mining works executed in them. According to this author, the areas are as follows:

a) Panasqueira and Barroca Grande
b) Corga Seca, Alvoroso, Veia Branca and Giestal
c) Lomba da Cevada
d) Rebordões and Seladinho
e) Fonte das Lameiras
f) Vale das Freiras and Vale da Ermida
g) Cabeço do Pião

1 - Panasqueira Mining Field – Castelo Branco District
(concession no. - name - registered on - locality)
316 – Ponte Masso - 07-04-1900 – Aldeia de São Francisco de Assis – Covilhãt
340 – Corga Seca - 26-11-1901 – Aldeia de São Francisco de Assis – Covilhã
366 – Salada Coca - 14-09-1903 – Aldeia de São Francisco de Assis - Covilhã
367 – Barroca Grande - 15-09-1903 – Aldeia de São Francisco de Assis - Covilhã
378 – Gambão - 05-05-1904 – Aldeia de São Francisco de Assis - Covilhã
380 – Alvaroso - 09-05-1904 – Aldeia de São Francisco de Assis - Covilhã
381 – Vale de Carvalhos - 10-05-1904 – Aldeia de São Francisco de Assis - Covilhã
399 – Terreno de Manuel Gil - 16-03-1906 – Aldeia de São Francisco de Assis – Covilhã
721 – Fontainhas - 21-11-1916 – Aldeia de São Francisco de Assis - Covilhã
844 – Giestal - 02-04-1919 – Aldeia de São Francisco de Assis – Covilhã
990 – Chiqueiro no. 2 - 03-03-1921 – Aldeia de São Francisco de Assis - Covilhã
1139 – Sítio dos Cambões - 12-05-1922 – Aldeia de São Francisco Assis - Covilhã
1565 – Bodelhão no. 1 - 12-11-1926 – Aldeia de São Francisco Assis - Covilhã
1566 – Bodelhão no. 2 - 12-11-1926 – Aldeia de São Francisco Assis - Covilhã
1567 – Bodelhão no. 3 - 12-11-1926 – Aldeia de São Francisco Assis – Covilhã
3088 – Parada do Bodelhão - 31-03-1956 – Aldeia de São Francisco Assis - Covilhã
3089 – Ribeiro da Videira no. 1 - 31-03-1956 – Aldeia de São Francisco Assis - Covilhã
3090 – Ribeiro da Videira no. 2 - 31-03-1956 – Aldeia de São Francisco Assis – Covilhã
3108 – Guinchão - 17-05-1956 – Aldeia de São Francisco Assis - Covilhã
3109 – Ribeiro Dianteiro - 17-05-1956 – Aldeia de São de Francisco Assis - Covilhã
3196 – Barroco do Carneiro - 20-02-1958 – Aldeia de São Francisco de Assis – Covilhã
1568 – Panasqueira no. 4 - 12-11-1996 - São Jorge da Beira (Cebola) - Covilhã
2347 – Madurrada - 08-01-1949 - São Jorge da Beira (Cebola) - Covilhã
2425 – Cova da Cruz - 29-09-1949 - São Jorge da Beira (Cebola) - Covilhã
2526 – Torgais - 24-02-1950 - São Jorge da Beira (Cebola) - Covilhã
253 – Panasqueira - 31-05-1894 – São Jorge da Beira (Cebola) - Covilhã
3098 – Cambões de Baixo - 03-05-1956 - São Jorge da Beira (Cebola) - Covilhã
3107 – Barroco dos Carias - 17-05-1956 - São Jorge da Beira (Cebola) - Covilhã
317 – Panasqueira no. 2 - 09-04-1900 – São Jorge da Beira (Cebola) - Covilhã
318 – Panasqueira no. 3 - 10-04-1900 – São Jorge da Beira (Cebola) - Covilhã
319 - Vale da Ermida - 11-04-1900 - São Jorge da Beira (Cebola) - Covilhã
3223 – Madurrada no. 2 - 12-07-1958 – São Jorge da Beira (Cebola) – Covilhã
470 – Vale do Rebordão - 04-09-1908 – São Jorge da Beira (Cebola) - Covilhã
695 – Barroco Fundo (Cebola no. 1) - 10-04-1916 – São Jorge da Beira (Cebola) - Covilhã
900 – Vale da Ermida no. 4 - 18-11-1919 – São Jorge da Beira (Cebola) - Covilhã
980 – Lomba do Muro - 02-12-1920 – São Jorge da Beira (Cebola) – Covilhã
987 – Curral dos Capados - 26-02-1981 – São Jorge da Beira (Cebola) – Covilhã
CM15 – Panasqueira – 23-09-1927 – São Jorge da Beira (Cebola) – Covilhã
255 – Cabeço do Pião - 11-10-1894 – Barroca - Fundão
1036 – Terras do Muro - 07-05-1921 – Barroca - Fundão
1207 – Cebolal ou Resteira - 28-07-1922 – Barroca – Fundão
955 – Costa Meal - 02-06-1920 – Silvares - Fundão
1212 – Costa Meal no. 1 - 03-08-1922 – Silvares – Fundão

2 - Vale da Ermida Mining Field – Coimbra District
(concession no. - name - registered on - locality)
640 – Fonte das Lameiras - 14-01-1915 – Dornelas do Zêzere – Pampilhosa da Serra - Coimbra
3186 - Roçadas - 31-12-1957 – Dornelas do Zêzere – Pampilhosa da Serra - Coimbra
986 - Vale da Ermida no. 2 - 25-02-1921 – Unhais o Velho – Pampilhosa da Serra – Coimbra
988 – Curral dos Capados no. 2 - 28-02-1921 – Unhais o Velho – Pampilhosa da Serra - Coimbra
989 – Chiqueiro no. 1 - 28-02-1921 – Unhais o Velho – Pampilhosa da Serra - Coimbra
3185 – Eiradas - 31-12-1957 – Unhais o Velho – Pampilhosa da Serra - Coimbra
3187- Portela no. 3 - 31-12-1957 – Unhais o Velho – Pampilhosa da Serra - Coimbra
CM55 - Vale da Ermida - 04-03-1961 – Unhais o Velho – Pampilhosa da Serra – Coimbra

Two mining fields: Panasqueira and Vale da Ermida
Two districts: Castelo Branco and Coimbra
Three municipalities: Covilhã, Fundão, Pampilhosa da Serra
Six localities: Aldeia de São Francisco de Assis, São Jorge da Beira, Barroca, Silvares, Dornelas do Zêzere and Unhais-o-Velho


(*) Thadeuite: TL Panasqueira, named for Décio Thadeu (1919-1995), Professor of Geology, Instituto Superior Técnico, Lisbon, Portugal.

Minerals

Panasqueira mines have produced, and still produce, the best ferberite, arsenopyrite and fluorapatite specimens in existence.

Select Mineral List Type

Standard Detailed Gallery Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

87 valid minerals. 2 (TL) - type locality of valid minerals. 3 erroneous literature entries.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Albite
Formula: Na(AlSi3O8)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
'Albite-Anorthite Series'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
'Alluaudite Group'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Althausite
Formula: Mg4(PO4)2(OH,O)(F,◻)
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Amblygonite
Formula: LiAl(PO4)F
Description: Argimela albitite. ( added by ??? ) The Argimela mine is only 12 km from Panasqueira what could have caused the confusion. Paul De Bondt.
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Amesite
Formula: Mg2Al(AlSiO5)(OH)4
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
Andalusite
Formula: Al2(SiO4)O
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Antimony
Formula: Sb
Reference: The Mineralogical record volume 45, january-february 2014.
Arsenic
Formula: As
Description: According to Milà et al. (2014), arsenic was erroneously reported in Milà & Fabre (2014), and had never been confirmed.
Reference: Azevedo and Calvo, 1997; Ascenção Guedes, 2002, The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).
Arseniosiderite
Formula: Ca2Fe3+3(AsO4)3O2 · 3H2O
Reference: No reference listed
Arsenopyrite
Formula: FeAsS
Habit: Large brilliant crystals.
Reference: [www.johnbetts-fineminerals.com]; Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Baryte
Formula: BaSO4
Reference: Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Berndtite
Formula: SnS2
Habit: Usually massive. "Type locality" for the -4H polytype of berndtite.
Colour: yellow
Fluorescence: no
Reference: Sopa de Pedras, A. M. Galopim de Carvalho, Gradiva, Lisbon
Bertrandite
Formula: Be4(Si2O7)(OH)2
Reference: Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Beryl
Formula: Be3Al2(Si6O18)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Bismuth
Formula: Bi
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Bismuthinite
Formula: Bi2S3
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Calcite
Formula: CaCO3
Reference: [www.johnbetts-fineminerals.com]
Canfieldite
Formula: Ag8SnS6
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Cassiterite
Formula: SnO2
Reference: Econ.Geol.: 83; 335-354; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).
Chalcocite
Formula: Cu2S
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Chalcopyrite
Formula: CuFeS2
Reference: [www.johnbetts-fineminerals.com]
Chamosite
Formula: (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
'Chlorite Group'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Knut Eldjarn
'Columbite-Tantalite'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.; Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Corundum
Formula: Al2O3
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Covellite
Formula: CuS
Cubanite
Formula: CuFe2S3
Dolomite
Formula: CaMg(CO3)2
Dravite
Formula: Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
'Dravite-Schorl Series'
Description: Neiva, A.M.R., Silva, M.M.V.G. & Gomes, M.E.P. (2001). Geochemistry of tourmaline from Hercynian granites, associated tin, tungsten and gold deposits and adjacent metamorphic and metasomatic rocks from northern Portugal. Eleventh Annual V.M. Goldschmidt Conference, Hot Springs, U.S.A.:123. The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55). X-Ray analysis done by Jordi Fabre.
Reference: Martins da Pedra collection
'Eta-bronze'
Formula: Cu6Sn5
Reference: No reference listed
Ferberite
Formula: FeWO4
Description: Panasqueira produces the best ferberite crystals known.
Reference: Sopas de Pedra, A. M. Galopim de Carvalho, LIsboa, Portugal
'Florencite'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Florencite-(Ce)
Formula: CeAl3(PO4)2(OH)6
Reference: Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.
Fluorapatite
Formula: Ca5(PO4)3F
Habit: Large crystals in different coulours and associations.
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Dunn, P. J. (1977): Apatite. A guide to species nomenclature. Mineralogical Record 8 (2): 78-82 ;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Fluorite
Formula: CaF2
Foitite
Formula: (◻,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
'Freibergite Subgroup'
Formula: ([Ag6]4+,(Ag,Cu)6)((Cu,Ag)4C2+2)Sb4S12S0-1
Galena
Formula: PbS
Goethite
Formula: α-Fe3+O(OH)
Reference: No reference listed
Gold
Formula: Au
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Gorceixite
Formula: BaAl3(PO4)(PO3OH)(OH)6
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
Goyazite
Formula: SrAl3(PO4)(PO3OH)(OH)6
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.; Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Graftonite
Formula: Fe2+Fe2+2(PO4)2
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
Gudmundite
Formula: FeSbS
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Gypsum
Formula: CaSO4 · 2H2O
Reference: No reference listed
Gypsum var. Selenite
Formula: CaSO4 · 2H2O
Reference: Martins da Pedra collection
Hagendorfite
Formula: NaCaMn2+Fe2+2(PO4)3
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Hematite
Formula: Fe2O3
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Hydrotungstite
Formula: WO3 · 2H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Ilmenite
Formula: Fe2+TiO3
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Isoclasite
Formula: Ca2(PO4)(OH) · 2H2O
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
Isokite
Formula: CaMg(PO4)F
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
'K Feldspar'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
Löllingite
Formula: FeAs2
Mackinawite
Formula: (Fe,Ni)9S8
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Marcasite
Formula: FeS2
Reference: Econ.Geol.: 83; 335-354; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Matildite
Formula: AgBiS2
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: Ko Jansen collection
Molybdenite
Formula: MoS2
'Monazite'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.; Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Panasqueiraite (TL)
Formula: CaMg(PO4)(OH,F)
Description: This mineral is impossible to determine without analysis and none of the specimens uploaded refer any analysis done.
Reference: Canadian Mineralogist(1981), 19, 389-392 and Canadian Mineralogist(1985), 23, 131 errata; American Mineralogist, Volume 67, pages 854-860, l982; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Pavonite
Formula: AgBi3S5
Pentlandite
Formula: (FexNiy)Σ9S8
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
Reference: No reference listed
'Protolithionite'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Pyrargyrite
Formula: Ag3SbS3
Pyrite
Formula: FeS2
Pyrrhotite
Formula: Fe1-xS
Quartz
Formula: SiO2
Reference: Rocks & Min.:62:333
Quartz var. Milky Quartz
Formula: SiO2
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Quartz var. Rock Crystal
Formula: SiO2
Reference: Martins da Pedra collection; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Rutile
Formula: TiO2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Scheelite
Formula: Ca(WO4)
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Scorodite
Formula: Fe3+AsO4 · 2H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Siderite
Formula: FeCO3
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Silver
Formula: Ag
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Sphalerite
Formula: ZnS
Reference: [www.johnbetts-fineminerals.com]
Stannite
Formula: Cu2FeSnS4
Stephanite
Formula: Ag5SbS4
Stibnite
Formula: Sb2S3
Svanbergite
Formula: SrAl3(PO4)(SO4)(OH)6
Reference: Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.; Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
'Tetrahedrite Subgroup'
Formula: Cu6(Cu4C2+2)Sb4S12S
Thadeuite (TL)
Formula: Ca(Mg,Fe2+)3(PO4)2(OH,F)2
Habit: massive
Colour: rose or yellow
Description: massive in quartz
Reference: American Mineralogist (1979): 64: 359-361; American Mineralogist, Volume 67, pages 854-860, l982; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Isaacs, A.M. and Peacor, D.R. (1982). "The crystal structure of thadeuite Mg(CaMn)(MgFeMn)2(PO4)2(OHF)2." American Mineralogist, 67(1/2),pp:120-125.
Topaz
Formula: Al2(SiO4)(F,OH)2
'Tourmaline'
Formula: A(D3)G6(Si6O18)(BO3)3X3Z
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Triplite
Formula: Mn2+2(PO4)F
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Tungstite
Formula: WO3 · H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Uraninite
Formula: UO2
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.; Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wagnerite
Formula: (Mg,Fe2+)2(PO4)F
Description: This mineral is impossible to determine without analysis and none of the specimens uploaded refer any analysis done.
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.; Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
'White mica'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
Wolfeite
Formula: Fe2+2(PO4)(OH)
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Wolframite'
Formula: (Fe2+)WO4 to (Mn2+)WO4
Description: "Wolframite" from Panasqueira turned out to be almost pure ferberite.
Reference: Mason, A. (1976) The world of Rocks and Minerals. New York, N.Y., Larousse & Co., 108 pages.; Bussink, R. W. (1984) Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.; Wimmers, D. (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine, 49, 745-748.; Snee, Lawrence W., Sutter, John F., Kelly, William C. (1988) Thermochronology of economic mineral deposits; dating the stages of mineralization at Panasqueira, Portugal, by high-precision 40 / 39 Ar age spectrum techniques on muscovite. Economic Geology, 83(2), 335-354.; www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf;Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
'Xenotime'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Xenotime-(Y)
Formula: Y(PO4)
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.
'Zinnwaldite'
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Zircon
Formula: Zr(SiO4)
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 2020, 10, 551.; Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Zwieselite
Formula: Fe2+2(PO4)F
Reference: Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Antimony1.CA.05Sb
Arsenic ?1.CA.05As
Bismuth1.CA.05Bi
'Eta-bronze'1.AC.15Cu6Sn5
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Arsenopyrite2.EB.20FeAsS
Berndtite2.EA.20SnS2
Bismuthinite2.DB.05Bi2S3
Canfieldite2.BA.70Ag8SnS6
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Cubanite2.CB.55aCuFe2S3
'Freibergite Subgroup'2.GB.05([Ag6]4+,(Ag,Cu)6)((Cu,Ag)4C2+2)Sb4S12S0-1
Galena2.CD.10PbS
Gudmundite2.EB.20FeSbS
Löllingite2.EB.15aFeAs2
Mackinawite2.CC.25(Fe,Ni)9S8
Marcasite2.EB.10aFeS2
Matildite2.JA.20AgBiS2
Molybdenite2.EA.30MoS2
Pavonite2.JA.05aAgBi3S5
Pentlandite2.BB.15(FexNiy)Σ9S8
Pyrargyrite2.GA.05Ag3SbS3
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe1-xS
Sphalerite2.CB.05aZnS
Stannite2.CB.15aCu2FeSnS4
Stephanite2.GB.10Ag5SbS4
Stibnite2.DB.05Sb2S3
'Tetrahedrite Subgroup'2.GB.05Cu6(Cu4C2+2)Sb4S12S
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Cassiterite4.DB.05SnO2
Corundum4.CB.05Al2O3
Ferberite4.DB.30FeWO4
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Hydrotungstite4.FJ.15WO3 · 2H2O
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
var. Milky Quartz4.DA.05SiO2
var. Rock Crystal4.DA.05SiO2
Rutile4.DB.05TiO2
Tungstite4.FJ.10WO3 · H2O
Uraninite4.DL.05UO2
Group 5 - Nitrates and Carbonates
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Calcite5.AB.05CaCO3
Dolomite5.AB.10CaMg(CO3)2
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Baryte7.AD.35BaSO4
Chalcanthite7.CB.20CuSO4 · 5H2O
Gypsum7.CD.40CaSO4 · 2H2O
var. Selenite7.CD.40CaSO4 · 2H2O
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Scheelite7.GA.05Ca(WO4)
Group 8 - Phosphates, Arsenates and Vanadates
Althausite8.BB.25Mg4(PO4)2(OH,O)(F,◻)
Amblygonite ?8.BB.05LiAl(PO4)F
Arseniosiderite8.DH.30Ca2Fe3+3(AsO4)3O2 · 3H2O
Florencite-(Ce)8.BL.13CeAl3(PO4)2(OH)6
Fluorapatite8.BN.05Ca5(PO4)3F
Gorceixite8.BL.10BaAl3(PO4)(PO3OH)(OH)6
Goyazite8.BL.10SrAl3(PO4)(PO3OH)(OH)6
Graftonite8.AB.20Fe2+Fe2+2(PO4)2
Hagendorfite8.AC.10NaCaMn2+Fe2+2(PO4)3
Isoclasite8.DN.10Ca2(PO4)(OH) · 2H2O
Isokite8.BH.10CaMg(PO4)F
Panasqueiraite (TL)8.BH.10CaMg(PO4)(OH,F)
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Svanbergite8.BL.05SrAl3(PO4)(SO4)(OH)6
Thadeuite (TL)8.BH.05Ca(Mg,Fe2+)3(PO4)2(OH,F)2
Triplite8.BB.10Mn2+2(PO4)F
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Wagnerite8.BB.15(Mg,Fe2+)2(PO4)F
Wolfeite8.BB.15Fe2+2(PO4)(OH)
Xenotime-(Y)8.AD.35Y(PO4)
Zwieselite8.BB.10Fe2+2(PO4)F
Group 9 - Silicates
Albite9.FA.35Na(AlSi3O8)
Amesite9.ED.15Mg2Al(AlSiO5)(OH)4
Andalusite9.AF.10Al2(SiO4)O
Bertrandite9.BD.05Be4(Si2O7)(OH)2
Beryl9.CJ.05Be3Al2(Si6O18)
Chamosite9.EC.55(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
Dravite9.CK.05Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Foitite9.CK.05(◻,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Topaz9.AF.35Al2(SiO4)(F,OH)2
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
''-
'Albite-Anorthite Series'-
'Alluaudite Group'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
'Chlorite Group'-
'Columbite-Tantalite'-
'Dravite-Schorl Series'-
'Florencite'-
'K Feldspar'-
'Limonite'-(Fe,O,OH,H2O)
'Monazite'-
'Protolithionite'-
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'White mica'-
'Wolframite' ?-(Fe2+)WO4to (Mn2+)WO4
'Xenotime'-
'Zinnwaldite'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Antimony1.3.1.2Sb
Arsenic ?1.3.1.1As
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 3:2
Canfieldite2.5.6.2Ag8SnS6
AmBnXp, with (m+n):p = 9:8
Mackinawite2.7.2.1(Fe,Ni)9S8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe1-xS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
Stannite2.9.2.1Cu2FeSnS4
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Berndtite2.12.14.5SnS2
Gudmundite2.12.4.2FeSbS
Löllingite2.12.2.9FeAs2
Marcasite2.12.2.1FeS2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø = 4
Stephanite3.2.4.1Ag5SbS4
3 <ø < 4
'Freibergite Subgroup'3.3.6.3([Ag6]4+,(Ag,Cu)6)((Cu,Ag)4C2+2)Sb4S12S0-1
'Tetrahedrite Subgroup'3.3.6.1Cu6(Cu4C2+2)Sb4S12S
ø = 3
Pyrargyrite3.4.1.2Ag3SbS3
ø = 2
Matildite3.7.1.1AgBiS2
1 < ø < 2
Pavonite3.8.10.1AgBi3S5
Group 4 - SIMPLE OXIDES
A2X3
Corundum4.3.1.1Al2O3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
AX2
Cassiterite4.4.1.5SnO2
Rutile4.4.1.1TiO2
AX3
Tungstite4.5.2.1WO3 · H2O
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
(AB)5(XO4)3
Hagendorfite38.2.3.2NaCaMn2+Fe2+2(PO4)3
(AB)3(XO4)2
Graftonite38.3.3.1Fe2+Fe2+2(PO4)2
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
A3(XO4)2·xH2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Scorodite40.4.1.3Fe3+AsO4 · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Amblygonite ?41.5.8.1LiAl(PO4)F
Florencite-(Ce)41.5.10.2CeAl3(PO4)2(OH)6
Isokite41.5.6.2CaMg(PO4)F
Panasqueiraite (TL)41.5.6.3CaMg(PO4)(OH,F)
Thadeuite (TL)41.5.16.1Ca(Mg,Fe2+)3(PO4)2(OH,F)2
A2(XO4)Zq
Althausite41.6.5.1Mg4(PO4)2(OH,O)(F,◻)
Triplite41.6.1.2Mn2+2(PO4)F
Wagnerite41.6.2.1(Mg,Fe2+)2(PO4)F
Wolfeite41.6.3.1Fe2+2(PO4)(OH)
Zwieselite41.6.1.1Fe2+2(PO4)F
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A2(XO4)Zq·xH2O
Isoclasite42.6.2.1Ca2(PO4)(OH) · 2H2O
(AB)2(XO4)Zq·xH2O
Gorceixite42.7.3.2BaAl3(PO4)(PO3OH)(OH)6
Goyazite42.7.3.3SrAl3(PO4)(PO3OH)(OH)6
(AB)5(XO4)3Zq·xH2O
Arseniosiderite42.8.4.3Ca2Fe3+3(AsO4)3O2 · 3H2O
Pharmacosiderite42.8.1a.1KFe3+4(AsO4)3(OH)4 · 6-7H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Svanbergite43.4.1.6SrAl3(PO4)(SO4)(OH)6
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Ferberite48.1.1.2FeWO4
Scheelite48.1.2.1Ca(WO4)
Group 49 - HYDRATED MOLYBDATES AND TUNGSTATES
Acid Hydrated Molybdates and Tungstates
Hydrotungstite49.1.1.1WO3 · 2H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Andalusite52.2.2b.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Bertrandite56.1.1.1Be4(Si2O7)(OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with Al substituted rings
Cordierite61.2.1.1(Mg,Fe)2Al3(AlSi5O18)
Six-Membered Rings with borate groups
Dravite61.3.1.9Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Foitite61.3.1.1(◻,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Amesite71.1.2c.1Mg2Al(AlSiO5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Chamosite71.4.1.7(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
''-
'Albite-Anorthite Series'-
'Alluaudite Group'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
'Chlorite Group'-
'Columbite-Tantalite'-
'Dravite-Schorl Series'-
'Eta-bronze'-Cu6Sn5
'Florencite'-
Gypsum
var. Selenite
-CaSO4 · 2H2O
'K Feldspar'-
Kaolinite-Al2(Si2O5)(OH)4
'Limonite'-(Fe,O,OH,H2O)
'Monazite'-
'Protolithionite'-
Quartz
var. Milky Quartz
-SiO2
var. Rock Crystal-SiO2
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'White mica'-
'Wolframite' ?-(Fe2+)WO4 to (Mn2+)WO4
'Xenotime'-
Xenotime-(Y)-Y(PO4)
'Zinnwaldite'-

List of minerals for each chemical element

HHydrogen
H ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
H PanasqueiraiteCaMg(PO4)(OH,F)
H SvanbergiteSrAl3(PO4)(SO4)(OH)6
H MuscoviteKAl2(AlSi3O10)(OH)2
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H TopazAl2(SiO4)(F,OH)2
H VivianiteFe32+(PO4)2 · 8H2O
H WolfeiteFe22+(PO4)(OH)
H TungstiteWO3 · H2O
H ScoroditeFe3+AsO4 · 2H2O
H PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
H Goethiteα-Fe3+O(OH)
H HydrotungstiteWO3 · 2H2O
H GypsumCaSO4 · 2H2O
H AlthausiteMg4(PO4)2(OH,O)(F,◻)
H BertranditeBe4(Si2O7)(OH)2
H ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
H Foitite(◻,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
H DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Gypsum var. SeleniteCaSO4 · 2H2O
H MelanteriteFe2+(H2O)6SO4 · H2O
H ChalcanthiteCuSO4 · 5H2O
H Florencite-(Ce)CeAl3(PO4)2(OH)6
H Limonite(Fe,O,OH,H2O)
H AmesiteMg2Al(AlSiO5)(OH)4
H Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
H GorceixiteBaAl3(PO4)(PO3OH)(OH)6
H GoyaziteSrAl3(PO4)(PO3OH)(OH)6
H IsoclasiteCa2(PO4)(OH) · 2H2O
H KaoliniteAl2(Si2O5)(OH)4
LiLithium
Li AmblygoniteLiAl(PO4)F
BeBeryllium
Be BerylBe3Al2(Si6O18)
Be BertranditeBe4(Si2O7)(OH)2
BBoron
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
B TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
B Foitite(◻,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
B DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
C SideriteFeCO3
C CalciteCaCO3
C DolomiteCaMg(CO3)2
C AnkeriteCa(Fe2+,Mg)(CO3)2
OOxygen
O ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
O PanasqueiraiteCaMg(PO4)(OH,F)
O FluorapatiteCa5(PO4)3F
O FerberiteFeWO4
O SideriteFeCO3
O CassiteriteSnO2
O SvanbergiteSrAl3(PO4)(SO4)(OH)6
O CalciteCaCO3
O QuartzSiO2
O MuscoviteKAl2(AlSi3O10)(OH)2
O DolomiteCaMg(CO3)2
O ScheeliteCa(WO4)
O IsokiteCaMg(PO4)F
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O TopazAl2(SiO4)(F,OH)2
O VivianiteFe32+(PO4)2 · 8H2O
O TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
O WolfeiteFe22+(PO4)(OH)
O TungstiteWO3 · H2O
O RutileTiO2
O ScoroditeFe3+AsO4 · 2H2O
O PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
O Goethiteα-Fe3+O(OH)
O HydrotungstiteWO3 · 2H2O
O MagnetiteFe2+Fe23+O4
O HematiteFe2O3
O GypsumCaSO4 · 2H2O
O AlthausiteMg4(PO4)2(OH,O)(F,◻)
O BerylBe3Al2(Si6O18)
O BertranditeBe4(Si2O7)(OH)2
O AnkeriteCa(Fe2+,Mg)(CO3)2
O ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
O Wagnerite(Mg,Fe2+)2(PO4)F
O Foitite(◻,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
O DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
O AndalusiteAl2(SiO4)O
O Cordierite(Mg,Fe)2Al3(AlSi5O18)
O ClinochloreMg5Al(AlSi3O10)(OH)8
O Gypsum var. SeleniteCaSO4 · 2H2O
O MelanteriteFe2+(H2O)6SO4 · H2O
O Quartz var. Rock CrystalSiO2
O ChalcanthiteCuSO4 · 5H2O
O TripliteMn22+(PO4)F
O BaryteBaSO4
O AlbiteNa(AlSi3O8)
O Florencite-(Ce)CeAl3(PO4)2(OH)6
O Limonite(Fe,O,OH,H2O)
O AmesiteMg2Al(AlSiO5)(OH)4
O Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
O GorceixiteBaAl3(PO4)(PO3OH)(OH)6
O GoyaziteSrAl3(PO4)(PO3OH)(OH)6
O GraftoniteFe2+Fe22+(PO4)2
O IsoclasiteCa2(PO4)(OH) · 2H2O
O UraniniteUO2
O Xenotime-(Y)Y(PO4)
O ZirconZr(SiO4)
O Quartz var. Milky QuartzSiO2
O IlmeniteFe2+TiO3
O CorundumAl2O3
O HagendorfiteNaCaMn2+Fe22+(PO4)3
O KaoliniteAl2(Si2O5)(OH)4
O ZwieseliteFe22+(PO4)F
O AmblygoniteLiAl(PO4)F
O Wolframite(Fe2+)WO4 to (Mn2+)WO4
FFluorine
F ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
F PanasqueiraiteCaMg(PO4)(OH,F)
F FluorapatiteCa5(PO4)3F
F IsokiteCaMg(PO4)F
F FluoriteCaF2
F TopazAl2(SiO4)(F,OH)2
F AlthausiteMg4(PO4)2(OH,O)(F,◻)
F Wagnerite(Mg,Fe2+)2(PO4)F
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
F TripliteMn22+(PO4)F
F ZwieseliteFe22+(PO4)F
F AmblygoniteLiAl(PO4)F
NaSodium
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Na DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Na AlbiteNa(AlSi3O8)
Na HagendorfiteNaCaMn2+Fe22+(PO4)3
MgMagnesium
Mg ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
Mg PanasqueiraiteCaMg(PO4)(OH,F)
Mg DolomiteCaMg(CO3)2
Mg IsokiteCaMg(PO4)F
Mg AlthausiteMg4(PO4)2(OH,O)(F,◻)
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg Wagnerite(Mg,Fe2+)2(PO4)F
Mg DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Mg Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg AmesiteMg2Al(AlSiO5)(OH)4
Mg Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
AlAluminium
Al SvanbergiteSrAl3(PO4)(SO4)(OH)6
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al TopazAl2(SiO4)(F,OH)2
Al BerylBe3Al2(Si6O18)
Al Foitite(◻,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Al DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Al AndalusiteAl2(SiO4)O
Al Cordierite(Mg,Fe)2Al3(AlSi5O18)
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al AlbiteNa(AlSi3O8)
Al Florencite-(Ce)CeAl3(PO4)2(OH)6
Al AmesiteMg2Al(AlSiO5)(OH)4
Al Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Al GorceixiteBaAl3(PO4)(PO3OH)(OH)6
Al GoyaziteSrAl3(PO4)(PO3OH)(OH)6
Al CorundumAl2O3
Al KaoliniteAl2(Si2O5)(OH)4
Al AmblygoniteLiAl(PO4)F
SiSilicon
Si QuartzSiO2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si TopazAl2(SiO4)(F,OH)2
Si TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
Si BerylBe3Al2(Si6O18)
Si BertranditeBe4(Si2O7)(OH)2
Si Foitite(◻,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Si DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Si AndalusiteAl2(SiO4)O
Si Cordierite(Mg,Fe)2Al3(AlSi5O18)
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si Quartz var. Rock CrystalSiO2
Si AlbiteNa(AlSi3O8)
Si AmesiteMg2Al(AlSiO5)(OH)4
Si Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Si ZirconZr(SiO4)
Si Quartz var. Milky QuartzSiO2
Si KaoliniteAl2(Si2O5)(OH)4
PPhosphorus
P ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
P PanasqueiraiteCaMg(PO4)(OH,F)
P FluorapatiteCa5(PO4)3F
P SvanbergiteSrAl3(PO4)(SO4)(OH)6
P IsokiteCaMg(PO4)F
P VivianiteFe32+(PO4)2 · 8H2O
P WolfeiteFe22+(PO4)(OH)
P AlthausiteMg4(PO4)2(OH,O)(F,◻)
P Wagnerite(Mg,Fe2+)2(PO4)F
P TripliteMn22+(PO4)F
P Florencite-(Ce)CeAl3(PO4)2(OH)6
P GorceixiteBaAl3(PO4)(PO3OH)(OH)6
P GoyaziteSrAl3(PO4)(PO3OH)(OH)6
P GraftoniteFe2+Fe22+(PO4)2
P IsoclasiteCa2(PO4)(OH) · 2H2O
P Xenotime-(Y)Y(PO4)
P HagendorfiteNaCaMn2+Fe22+(PO4)3
P ZwieseliteFe22+(PO4)F
P AmblygoniteLiAl(PO4)F
SSulfur
S ArsenopyriteFeAsS
S BerndtiteSnS2
S GalenaPbS
S MarcasiteFeS2
S SvanbergiteSrAl3(PO4)(SO4)(OH)6
S ChalcopyriteCuFeS2
S SphaleriteZnS
S CovelliteCuS
S CubaniteCuFe2S3
S Freibergite Subgroup([Ag6]4+,(Ag,Cu)6)((Cu,Ag)4C22+)Sb4S12S0-1
S MatilditeAgBiS2
S MolybdeniteMoS2
S PavoniteAgBi3S5
S Pentlandite(FexNiy)Σ9S8
S PyrargyriteAg3SbS3
S PyriteFeS2
S PyrrhotiteFe1-xS
S StanniteCu2FeSnS4
S StephaniteAg5SbS4
S StibniteSb2S3
S Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
S GudmunditeFeSbS
S GypsumCaSO4 · 2H2O
S Mackinawite(Fe,Ni)9S8
S AcanthiteAg2S
S CanfielditeAg8SnS6
S ChalcociteCu2S
S BismuthiniteBi2S3
S Gypsum var. SeleniteCaSO4 · 2H2O
S MelanteriteFe2+(H2O)6SO4 · H2O
S ChalcanthiteCuSO4 · 5H2O
S BaryteBaSO4
KPotassium
K MuscoviteKAl2(AlSi3O10)(OH)2
K PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
CaCalcium
Ca ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
Ca PanasqueiraiteCaMg(PO4)(OH,F)
Ca FluorapatiteCa5(PO4)3F
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
Ca ScheeliteCa(WO4)
Ca IsokiteCaMg(PO4)F
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
Ca Gypsum var. SeleniteCaSO4 · 2H2O
Ca IsoclasiteCa2(PO4)(OH) · 2H2O
Ca HagendorfiteNaCaMn2+Fe22+(PO4)3
TiTitanium
Ti RutileTiO2
Ti BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Ti IlmeniteFe2+TiO3
MnManganese
Mn TripliteMn22+(PO4)F
Mn HagendorfiteNaCaMn2+Fe22+(PO4)3
Mn Wolframite(Fe2+)WO4 to (Mn2+)WO4
FeIron
Fe ArsenopyriteFeAsS
Fe FerberiteFeWO4
Fe SideriteFeCO3
Fe MarcasiteFeS2
Fe ChalcopyriteCuFeS2
Fe CubaniteCuFe2S3
Fe LöllingiteFeAs2
Fe Pentlandite(FexNiy)Σ9S8
Fe PyriteFeS2
Fe PyrrhotiteFe1-xS
Fe StanniteCu2FeSnS4
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe WolfeiteFe22+(PO4)(OH)
Fe ScoroditeFe3+AsO4 · 2H2O
Fe PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
Fe Goethiteα-Fe3+O(OH)
Fe MagnetiteFe2+Fe23+O4
Fe GudmunditeFeSbS
Fe HematiteFe2O3
Fe Mackinawite(Fe,Ni)9S8
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
Fe Foitite(◻,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Fe Cordierite(Mg,Fe)2Al3(AlSi5O18)
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe Limonite(Fe,O,OH,H2O)
Fe Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Fe GraftoniteFe2+Fe22+(PO4)2
Fe IlmeniteFe2+TiO3
Fe HagendorfiteNaCaMn2+Fe22+(PO4)3
Fe ZwieseliteFe22+(PO4)F
Fe Wolframite(Fe2+)WO4 to (Mn2+)WO4
NiNickel
Ni Pentlandite(FexNiy)Σ9S8
Ni Mackinawite(Fe,Ni)9S8
CuCopper
Cu ChalcopyriteCuFeS2
Cu CovelliteCuS
Cu CubaniteCuFe2S3
Cu Freibergite Subgroup([Ag6]4+,(Ag,Cu)6)((Cu,Ag)4C22+)Sb4S12S0-1
Cu StanniteCu2FeSnS4
Cu Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
Cu Eta-bronzeCu6Sn5
Cu ChalcociteCu2S
Cu ChalcanthiteCuSO4 · 5H2O
ZnZinc
Zn SphaleriteZnS
AsArsenic
As ArsenopyriteFeAsS
As LöllingiteFeAs2
As ScoroditeFe3+AsO4 · 2H2O
As PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
As ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
As ArsenicAs
SrStrontium
Sr SvanbergiteSrAl3(PO4)(SO4)(OH)6
Sr GoyaziteSrAl3(PO4)(PO3OH)(OH)6
YYttrium
Y Xenotime-(Y)Y(PO4)
ZrZirconium
Zr ZirconZr(SiO4)
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag Freibergite Subgroup([Ag6]4+,(Ag,Cu)6)((Cu,Ag)4C22+)Sb4S12S0-1
Ag MatilditeAgBiS2
Ag PavoniteAgBi3S5
Ag PyrargyriteAg3SbS3
Ag StephaniteAg5SbS4
Ag SilverAg
Ag AcanthiteAg2S
Ag CanfielditeAg8SnS6
SnTin
Sn BerndtiteSnS2
Sn CassiteriteSnO2
Sn StanniteCu2FeSnS4
Sn Eta-bronzeCu6Sn5
Sn CanfielditeAg8SnS6
SbAntimony
Sb Freibergite Subgroup([Ag6]4+,(Ag,Cu)6)((Cu,Ag)4C22+)Sb4S12S0-1
Sb PyrargyriteAg3SbS3
Sb StephaniteAg5SbS4
Sb StibniteSb2S3
Sb Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
Sb GudmunditeFeSbS
Sb AntimonySb
BaBarium
Ba BaryteBaSO4
Ba GorceixiteBaAl3(PO4)(PO3OH)(OH)6
CeCerium
Ce Florencite-(Ce)CeAl3(PO4)2(OH)6
WTungsten
W FerberiteFeWO4
W ScheeliteCa(WO4)
W TungstiteWO3 · H2O
W HydrotungstiteWO3 · 2H2O
W Wolframite(Fe2+)WO4 to (Mn2+)WO4
AuGold
Au GoldAu
PbLead
Pb GalenaPbS
BiBismuth
Bi MatilditeAgBiS2
Bi PavoniteAgBi3S5
Bi BismuthBi
Bi BismuthiniteBi2S3
UUranium
U UraniniteUO2

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Clark, A.H. (1965) Notes on the mineralogy of Panasqueira tin-tungsten deposit, Portugal. Comunicacaoes dos Servicos Geologicos de Portugal, 48, 201-12.
Gaines, R.W., Thadeu, D. (1971) The minerals of Panasqueira, Portugal. Mineralogical Record, 2(2), 73-78.
dos Reis, A.C. (1971) As Minas da Panasqueira. Beralt Tin & Wolfram, Ltd., Lisboa.
Dunn, P.J. (1977) Apatite. A guide to species nomenclature. Mineralogical Record, 8(2), 78-82 [with analysis of green and violet apatite-(CaF) from Panasqueira].
Thadeu, D. (1979) Le gisement stanno-wolframifère de Panasqueira (Portugal). Chronique de la Recherche Minière, 450, 35-42.
Kelly, W.C., Rye, R.O. (1979) Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology, 74, 1721-1822.
Bulletin de Minéralogie (1984) 107, 703-713.
Bussink, R.W. (1984) Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wimmers, D. (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine, 49, 745-748.
Bulletin de Minéralogie (1988) 111, 251-256.
Costa, L.R., Goinhas, J.A.C. (1988) Alguns aspectos da indústria extractiva de cobre em Portugal. Boletim de Minas, Lisboa, 25(2) (Abr/Jun 1988), 167-175.
Foxford, K.A., Nicholson, R., Polya, D.A. (1991) Textural evolution of W-Cu-Sn bearing hydrothermal veins at Minas da Panasqueira, Portugal. Mineralogical Magazine, 55, 435-445.
Azevedo Da Silva, R.P., Calvo, M. (1997) Minéralogie (Panasqueira). Bocamina, 12-27.
Werner, A.B.T., Sinclair, W.D., Amey, E.B. (1998) International Strategic Mineral Issues Summary Report - Tungsten. US Geological Survey Circular 930-O.
De Ascencao Guedes, R. (2002) Le coteau minier de Panasqueira, Beira Baixa (Portugal). Le Règne Minéral, 43, 6-32.
USGS (2005) Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10055806 & 10304117.
Keeping a low profile at Panasqueira, Mining Methods in Underground Mining (2007) Atlas Copco, 135-140.
Milà, Carlos Curto, Fabre, Jordi (2014) The Mineralogical Record, 45(1), 11-55.
Weiß, S., Fabre, J., Mila, C.C. (2014) Panasqueira, Portugal: Wolframit, Zinnstein und prächtige Apatite. Lapis, 39(7/8), 16-29 (in German).
Weiß, S., Fabre, J. (2014) Panasqueira: Mineralien für Kenner - von A bis Z. Lapis, 39(7/8), 30-53.
Mila, C.C., Salvan, C.M., Fabre, J. (2014) Panasqueira: Neufunde und Neubestimmungen. Lapis, 39(7/8), 54-63 [mineral list on page 63].
Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7, 1-8.
Mateus, A.; Figueiras, J.; Martins, I.; Rodrigues, P.C.; Pinto, F. (2020) Relative Abundance and Compositional Variation of Silicates, Oxides and Phosphates in the W-Sn-Rich Lodes of the Panasqueira Mine (Portugal): Implications for the Ore-Forming Process. Minerals 10, 551.
Marignac, C.; Cuney, M.; Cathelineau, M.; Lecomte, A.; Carocci, E.; Pinto, F. (2020) The Panasqueira Rare Metal Granite Suites and Their Involvement in the Genesis of the World-Class Panasqueira W–Sn–Cu Vein Deposit: A Petrographic, Mineralogical, and Geochemical Study. Minerals 10, 562.
Siorminp/LNEG.

External Links


Localities in this Region

Other Regions, Features and Areas that Intersect

Eurasian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
矿物 and/or 产地  
版权所有© mindat.org1993年至2020年,除了规定的地方。 Mindat.org全赖于全球数千个以上成员和支持者们的参与。
隐私政策 - 条款和条款细则 - 联络我们 Current server date and time: 2020.9.21 20:44:09 Page generated: 2020.9.21 10:21:37
Go to top of page